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ABSTRACT

Solutions of an axially symmetric inviscid shallow-water model (SWM) on the earth forced by equinoctial

differential heating are constructed using numerical integration of the time-dependent equations and analysis

of their steady states. The study also maps the physical initial conditions and parameter values for which the

solutions approach steady states at long times, demonstrating strong dependence of the SWM on initial

conditions. The model admits states of uniform angular momentum, including superrotation, in the tropics

and radiative equilibrium at high latitudes. The asymptotic properties of the subtropical jets and tropical

fluxes are explicitly calculated and it is shown that all solutions of the previously studied nearly inviscid

theories are particular solutions of the present theory. The model’s results relate the location and intensity of

the subtropical jet in the steady states to properties of the SWM on a sphere, such as the conservation of

angular momentum. The exact form of the differential heating is secondary in determining these properties

and its main role is to transform any initial state to the vicinity of the steady states.

When mass is assumed to be supplied to the fluid from an underlying motionless layer (this model is termed

the 1½-SWM), the angular momentum in the tropics is not uniform (so the local Rossby number is smaller than

1), the height of the tropopause is nearly uniform there, the steady states do not depend on the initial conditions,

and the zonal velocity vanishes on the equator. Accurate and simple estimates that are determined only by the

value of a thermal Rossby number are derived in this case for the location and intensity of the subtropical jet.

1. Introduction

Axially symmetric models that describe the zonally

averaged general circulation of the atmosphere are

most relevant to the tropics where a weak Hadley cir-

culation is produced even when large-scale eddies are

suppressed. Poleward of the tropics, macroturbulent

and moist momentum heat fluxes dominate those of the

mean circulation and, therefore, significantly influence

the circulation strength and width and the meridional

profile of the subtropical jet. Macroturbulent and moist

theory, however, must build upon axially symmetric

theory as the latter represents an asymptotic limit of the

former (Schneider 2006).

The scant data available in the 1960s (Lorenz 1967)

pointed to the role that the tropical (Hadley) circulation

plays in the horizontal poleward transport of energy and

momentum. The first detailed numerical calculations of

axially symmetric models of the circulation were done by

Schneider and Lindzen (1977) and Schneider (1977),

followed by Held and Hou (1980, hereafter HH80). The

nearly-inviscid, simple steady-state theory of HH80 (for

simplicity, HH80 theory) was shown by HH80 to provide

an approximation to the numerically calculated steady

states. The solutions at the rigid lid that marks the tro-

popause were constructed by assuming 1) an energeti-

cally closed upper branch in the tropics with uniform

absolute angular momentum (hereafter referred to sim-

ply as angular momentum), 2) balanced wind, 3) negligi-

ble horizontal velocity at the earth’s surface (where sur-

face friction dominates the force balance), and 4) New-

tonian cooling that relaxes toward radiative equilibrium.

Subsequent studies of axially symmetric models in the

limit of vanishing viscosity extended HH80 theory to

off-equatorial heating (Lindzen and Hou 1988), more

general steady meridional heating distributions (Hou

and Lindzen 1992; Plumb and Hou 1992; Fang and Tung

1996), radiative–convective forcing (Satoh 1994), and

time-dependent heating (Fang and Tung 1999).
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While HH80 theory provided a great qualitative ad-

vance in dynamical meteorology, some ambiguity exists

regarding the interpretation and validity of its predictions.

First, in the inviscid limit (in which the width and strength

of the Hadley circulation become independent of the

value of the turbulent viscosity) the HH80 model be-

comes a barotropic layer that lies on top of a thin surface

boundary layer (cf. Fig. A1 of Williams 2003). However,

in HH80’s simulation of the tropical circulation on earth

the atmosphere in midlatitudes is highly baroclinic and

sensitive to changes in the viscosity, which defies the

nearly-inviscid assumption (Walker and Schneider 2005).

Second, the assumption of a rigid lid that bounds the at-

mosphere from above inevitably introduces a spurious

magnification of the wind there in some cases (Walker

and Schneider 2005). Third, the inviscid paradigm of a

tropical uniform angular momentum region and an ex-

tratropical radiative equilibrium region entails a discon-

tinuity in the zonal wind at the boundary between these

regions, which is not expected to exist in reality.

The shallow-water model (SWM) used in the present

work relaxes both the need for adding viscosity to the

governing equations and the existence of a rigid lid at

the upper boundary, making it ideal for simulating in-

viscid dynamics (which the upper branch of the Hadley

circulation is supposed to obey). The relative simplicity

of the SWM allows one to obtain analytical solutions in

particular cases while retaining the essential properties

of the general circulation (e.g., Polvani and Sobel 2002;

Shell and Held 2004).

The SWM describes the fluid dynamics in a thin is-

entropic layer in hydrostatic equilibrium and, as such,

precludes diabatic dynamics that may be particularly

relevant in midlatitudes where isentropic surfaces in-

tersect the tropopause (Held and Phillips 1990). The

large-scale balanced dynamics of the upper troposphere,

however, have been shown to be captured in a succinct

and simple manner by the concept of isentropic poten-

tial vorticity (Hoskins et al. 1985). Under such a rep-

resentation, the midlatitude isentropic tropopause is

associated with steep potential vorticity gradients. Such

steep gradients are reproduced by isentropic models,

implying that adiabatic motion significantly affects the

shape of the tropopause (Ambaum 1997).

Plumb and Hou (1992) and Fang and Tung (1999)

noted that the adjustment time required for an axially

symmetric model to approach steady state is significantly

longer than a season, which poses additional difficulties

associated with numerical instabilities in long integra-

tions. The SWM allows the inviscid equations to be in-

tegrated over very long times using negligible explicit

numerical viscosities, thus enabling the study of the

model’s inviscid (Eulerian) steady states.

Using the angular momentum as a dynamic variable

greatly simplifies the analysis of nonlinear dynamics on

a rotating sphere in various settings, for example, Plumb

and Hou (1992), inertial motion (Paldor 2001), equa-

torial crossing of tropical monsoon systems (Dvorkin

and Paldor 1999), and Ekman transport (Paldor 2002).

In the present work we analyze the nonlinear SWM on

the rotating spherical earth and derive some constraints

on its solutions by studying the evolution equation for

angular momentum instead of merely applying its con-

servation as was done in some previous studies.

As pointed out by Fang and Tung (1996), in Eulerian

flows the meridional distribution of the angular mo-

mentum is the solution of an initial value problem. Vis-

cous steady flows, however, introduce an additional

constraint whereby the angular momentum maximizes at

the lower boundary. This property that follows from

Hide’s theorem for steady viscous flows [cf. HH80; for

more details, Plumb and Hou(1992)] indicates that ana-

lytical results obtained for Eulerian flows differ from

numerical results obtained in the limit of vanishing vis-

cosity. Fang and Tung (1996) also note that, since the

atmosphere is never in a steady state, it is not clear

whether the relevant theory is Eulerian or nearly inviscid.

Recently, Walker and Schneider (2006) and Schneider

(2006) showed that zonally and temporally averaged

circulations of an idealized dry general circulation model

(GCM) do not follow the predictions of nearly-inviscid

theory except for special cases, stressing the need for an

improved axially symmetric theory. This work is an at-

tempt to construct such an axially symmetric model of the

circulation on earth that contains few parameters (so it

can be simply analyzed) and includes the solar differen-

tial heating. To this end we employ a SWM properly

parameterized to include the solar differential heating,

which satisfies the simplicity and clarity requirements and

removes the rigid-lid assumption of the HH80 theory.

The layout of this work is as follows: the model is

introduced and its steady states are analyzed in section

2. The time-dependent equations are integrated nu-

merically in section 3, and the asymptotic states of the

system at long times are solved for steady equinoctial

forcing. In section 4 the physical nature of the forcing is

studied by considering modifications of the forcing

corresponding to different physical premises. The paper

ends with a summary and discussion in section 5.

2. Model equations and steady states

a. Model equations

The equations of the SWM on a spherical earth (with

radius a, latitude f, and longitude l coordinates) rotating
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about its polar axis (frequency V but no centrifugal

acceleration) with a source of mass (height) Q are given

by (Gill 1982)

Dy

Dt
5 � 2V 1

u

a cos f

� �
u sin f� g

a

›h

›f
, (1a)

Du

Dt
5 2V 1

u

a cos f

� �
v sin f� g

a cos f

›h

›l
, (1b)

and

›h

›t
1

1

a cos f

›

›l
(hu) 1

›

›f
(hy cos f)

� �
5 Q, (1c)

where

D

Dt
5

›

›t
1

u

a cos f

›

›l
1

y

a

›

›f

denotes the material (total, Lagrangian) derivative in

spherical coordinates and where g is the gravitational

constant, u and y denote the longitudinal and meridio-

nal velocity components, respectively, and h denotes the

thickness of the atmosphere. The source Q on the right-

hand side (rhs) of the continuity equation (1c) is asso-

ciated with differential solar heating given by

Q 5 �
h� hf

t
(1d)

and

hf 5 H0 1 H1[1� 2(sin f� sin f0)2]. (1e)

Here t is a constant atmospheric relaxation time (com-

monly set to 2–3 weeks), hf is the radiative-equilibrium

height given by the height scale H0, half the equator-to-

pole height (temperature) difference H1, and the latitude

of maximal forcing (heating) f0. This form of the radiative-

equilibrium height follows the upper branch of the ra-

diative forcing used by Lindzen and Hou (1988).

Equations (1a)–(1e) are nondimensionalized using the

following scales: u on Va, t on t, y on a/t, and h and hf on

H0. Thus, the natural scale for the angular momentum,

M 5 cosfa (Vacosf1u), is Va2. To simplify the subsequent

analysis, we make the following substitutions in system

(1): M for u, V 5 ycosf for y, and m 5 sinf for f. Axial

symmetry is introduced by setting the longitudinal deriv-

ative equal to zero. These substitutions yield the following

nondimensional system (where the dot and prime denote

derivatives with respect to time and m, respectively):

_V 5 �VV9� m

1� m2
(atM2 1 V2)

1 (1� m2)(atm� agh9)
(2a)

_M 5�VM9, (2b)

_h 5�(hV)9� (h� hf ), (2c)

hf 5 1 1 h1(1� 2(m� m0)2). (2d)

Only three nondimensional parameters determine the

solutions of this system:

at 5 (Vt)2; ag 5
gH0t2

a2
and h1 5

H1

H0
. (2e)

Under typical conditions in the planetary troposphere

(H0: 10–12 km, H1: 1–2 km, and t: ;20 days), the values

of these nondimensional parameters are at ; 104, ag ;

104, and h1 ; 0.2. Further details of the precise values of

these nondimensional parameters used in the present

model are provided below in this section.

The representation (2a)–(2c) is simpler than (1a)–(1c)

in that the zonal momentum equation in spherical co-

ordinates with rotation (1b) becomes the simple ad-

vection equation (2b), no spherical terms exist in the

continuity equation (2c), and the regularity of u, y, and h

at the poles is assured by the simple boundary condition

V(m 5 61, t) 5 0 5 M(m 5 61, t). (2f)

In the absence of a source, the conserved quantities of

the SWM are the total mass, total angular momentum,

and total energy, denoted here as Kh, KM, and Ke, re-

spectively. These quantities were derived for the free,

two-dimensional shallow-water equations on a sphere

by Paldor and Domelevo (2005, personal communica-

tion). The total mass (scaled on 4pa2H0r0, where r0 is

the mean density of the atmosphere) is

Kh 5

ðh

0

ð1

�1

dhdm 5

ð1

�1

hdm, (3a)

and Eq. (2c) yields the conservation law for the total

mass:

dKh

dt
5

ð1

�1

Qdm. (3b)

The total angular momentum is defined by

KM 5

ðh

0

ð1

�1

Mdhdm 5

ð1

�1

Mhdm (4a)

(and its scale is 4pVa3H0r0). Equations (2c) and (2b)

yield the conservation law for the total angular mo-

mentum:
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dKM

dt
5

ð1

�1

QMdm. (4b)

The total energy of a layer of fluid is the sum of the

vertically integrated kinetic and potential energy. The

energy per unit height (mass) is

e 5
1

2
v � v 1 agh, (5a)

where v denotes the horizontal velocity vector and, there-

fore, the total energy is given by

Ke 5

ðh

0

ð1

�1

edhdm 5

ð1

�1

1

2
hv � v 1

1

2
agh2

� �
dm, (5b)

scaled on 2pa2H0r0 (V2a2(111/at) 1 agH0). Combining

Eqs. (2a)–(2c), one obtains the conservation law for the

total energy:

dKe

dt
5

ð1

�1

Qedm. (5c)

b. Steady states

Steady solutions of Eqs. (2a)–(2c) are obtained by

setting the lhs equal to zero. From Eq. (2b) it is clear

that a steady state is only possible when either V 5 0 or

M(m) 5 const. Setting V 5 0 in system (2) yields the

radiative-equilibrium steady state:

V 5 0; M2 5 (1� m2)2[1 1 2RT(1� m0/m)]; h 5 hf ,

(6a)

where RT 5 2gH1 / V2a2 5 2h1ag / at is the counterpart

of HH80’s thermal Rossby number and its typical value

is ;0.16 (for H1 5 1750 m and H0 5 10 km). The neg-

ative root of the angular momentum in Eq. (6b) corre-

sponds to negative and unphysically large zonal veloc-

ities and will not be treated here [but, as will be shown in

section 3d, the steady attractor sets of (2a)–(2e) are

symmetric with respect to the sign of M0]. The set (6a)–

(6c) should be compared with the expressions derived in

section 2 of HH80. For equinoctial forcing (m0 5 0, the

case studied by HH80), the radiative-equilibrium state

implies superrotation at the equator (M . 1 at m 5 0),

which is prohibited by Hide’s theorem in a steady vis-

cous atmosphere but does not apply to the Eulerian

(inviscid) SWM.

Setting M 5 M0 5 const in system (2) yields the

uniform-M steady state given by

V 5 �1

h

ð
(h� hf )dm; M 5 M0;

h 5 h0 1
h1

RT
m2 �M 2

0 1 a �1
t V2

1� m2

 !
, (7a), (7b), (7c)

where h0 is the constant of integration of Eq. (2a). It is

easily verified that for our choice of hf Eqs. (6a)–(6c)

and (7a)–(7c) can be simultaneously satisfied only at

isolated m points and for special values of the parame-

ters: in general, the form of forcing used here does not

permit the radiative-equilibrium and uniform-M states

to coexist in any interval of m.

Since M is real, Eq. (6b) implies that radiative equi-

librium can exist only for

1 .
BS

m
, (8a)

in which

BS 5
2RTm0

1 1 2RT
, (8b)

and that radiative equilibrium exists on the equator (i.e.,

m 5 0) only for m0 5 0. For off-equatorial forcing (m0 6¼ 0)

Eq. (8a) does not limit the highest latitude of radiative

equilibrium in the winter hemisphere where mm0 , 0.

Note that, although the expressions are similar, Eq. (8)

is derived by requiring that M be real whereas the ex-

pressions derived by Plumb and Hou (1992) and Ema-

nuel (1995) for radiative-equilibrium steady states are

derived as extensions of Hide’s theorem (which does

not hold in the SWM). More generally, for arbitrary

forcing condition (8a) can be written as

hf 9

m
,

at

ag
, (8c)

implying that for radiative equilibrium to exist near the

equator hf9 has to vanish there. The same conclusion

was reached by Lindzen and Hou (1988) and Schneider

(2006) for small angle, m � 1 (which is why for off-

equatorial heating only uniform-M steady state exists

near the equator). It should also be noted that a global

uniform-M steady state that satisfies the boundary

conditions (2f) only exists for M0 5 0, for which the

zonal velocity has an unrealistic value of 1.5 Mach

on the equator [i.e., u(0) 5 2Va]. Since in our scaling

V ; O(1), and at ; O(104), the nonlinear V terms in

Eqs. (2a) and (7c) are negligibly small compared to the

other terms. This approximation yields explicit expres-

sions for h and V in the global uniform-M steady state,

which for M 5 0 are written as

h 5 1 1
h1

RT
m2 � 2RTm 2

0 1
RT � 1

3

� �
(9a)

and

V 5
(1 1 2RT 1 6RTm 2

0 )m� 2RT(m� m0)3 � m3

RT(3/h1 1 1� 6m 2
0 )� 1 1 3m2

. (9b)
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Under this approximation the boundary conditions

V(m 5 61) 5 0 are exactly satisfied in the equinoctial

case, whereas for small m0 6¼ 0 the error is O(m0RT)

;1022. It should be noted that both global steady states

are unphysical on the equator (M 5 0 implies unrealistic

u while the radiative-equilibrium state implies super-

rotation), indicating that the physically acceptable steady

states of the system consist of combinations of the two

steady states.

In both steady states the value of the total mass ~Kh

[which denotes Kh at the steady states according to Eq.

(3a)] is given by

~Kh 5

ð1

�1

hf dm 5 2 1 1 h1
1

3
� 2m 2

0

� �� �
. (10)

Equations (6a)–(6c) and (7a)–(7c) indicate that the

steady solutions of Eqs. (2a)–(2c) depend on RT and m0

[i.e., a particular combination of the model parameters

in Eq. (2e)]. In the present study we only consider the

m0 5 0 case: the effect of off-equatorial heating is left for

a sequel study. Effectively, RT is a Richardson number

that quantifies the available potential energy (scaled on

the square of the velocity scale). In the present shallow-

water model, in which the height is proportional to

temperature, the value of H0 is arbitrary (provided only

that H1 , H0)� a as it affects only the expression for h

in the uniform-M steady state. The ambiguous inter-

pretation of the height as both geopotential height and

temperature is settled in this work by the choice of the

values of H0 and H1 such that h1 (5 H1/H0) models the

ratio between the equator to pole temperature differ-

ence and the mean tropospheric temperature, whereas

H1 models the equator to pole geopotential difference.

In addition, the tropical circulation on earth is charac-

terized by a strong shear between its upper branch,

dominated by poleward angular momentum–conserving

flow, and its drag-dominated lower branch. In the in-

viscid limit—the nature of the viscosity (i.e., turbulent

or molecular) is not relevant in this case—the circula-

tion becomes predominantly barotropic, following the

upper angular momentum–conserving branch of the

circulation with a thin bottom boundary layer (Williams

2003). Therefore, although the effective thickness of the

upper—presumably isentropic—branch of the Hadley

circulation on earth is relatively thin [;400 m in the

tropics for a linear model where the shape of the

tropopause is externally enforced, Held and Phillips

(1990)], the SWM applies to an inviscid layer whose

geopotential height is essentially the height of the bulk

of the tropopause.

3. Analytical and numerical solutions for m0 5 0

a. The relationship between initial conditions and
steady states

A simple choice of initial conditions, commonly used

in previous studies, is a motionless atmosphere with

uniform height; that is,

u(m, 0) 5 0 5 M(m, 0) 5 1� m2,

V(m, 0) 5 0,

h(m, 0) 5 const, (11a), (11b), (11c)

which guarantees that h and M are symmetric and V is

antisymmetric with respect to m. The relevance of these

symmetric initial conditions to more general ones is

bolstered by our finding (numerical results, not shown)

that for mixed, symmetric and antisymmetric initial

conditions the inherent symmetry of hf imposes its

symmetry on h(m), causing V(m) to be antisymmetric

and M(m) to be symmetric after sufficiently long times.

For a symmetric M(m) and an antisymmetric V(m) Eq.

(2b) implies:

›M

›t

����
equator

5 0,

V(0, t) 5 0,

M(0, t) 5 M0( 5 const), (12a), (12b), (12c)

indicating that the asymptotic state of the system de-

pends critically on M(m, t 5 0). Note that hemispherical

symmetry is imposed on the forcing but not on the so-

lutions; that is, the vanishing of the meridional flux at

the equator is not a boundary condition (as is the case in

HH80). In our numerical integrations the above in-

ferred symmetry of M(m) and asymmetry V(m) is real-

ized for both symmetric (at short times) and antisym-

metric (after long times) initial conditions. It follows

from Eqs. (6a)–(6c) and (7a)–(7c) that for the radiative

equilibrium to be reached at the equator M has to be

initiated with M(m 5 0) 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
while the uniform-

M state can be reached there only if M(m 5 0) 5 0

initially. Indeed, when integrations were initiated with

V(m) and h(m) near those of Eqs. (3a)–(3c) and (4a)–

(4c) but with the above values of M(m 5 0), the steady

states reached by the system after long times were, as

expected, the global radiative-equilibrium and uniform-

M states, respectively.

b. Numerical scheme

Time integrations of system (2) were performed using

a staggered grid (where h is staggered from V and M)

leapfrog scheme with a Robert–Asselin time filter (a 5

0.001). It is well known that, as diffusion tends to zero,
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smooth solutions of the shallow-water equations con-

verge to discontinuous (weak) solutions. As implied by

HH80 and shown in the next section, this is the case with

Eq. (2b). As solutions of Eq. (2b) approach a jump, two

problems arise with the aforementioned leapfrog scheme

[which is centered in time and space in the case of Eq.

(2b)]. First, previous analysis of the linearized shallow-

water equations has shown that, while damping the com-

putational mode inherent in the leapfrog scheme, the

Robert–Asselin filter may also significantly damp the

physical mode and introduce a phase error as well as

instabilities (Schlesinger et al. 1983; Déqué and Cariolle

1986). The damping and phase error of the physical

mode strengthen with the frequency of the mode.

Therefore, as a jump is approached, the Robert–Asselin

time filter is expected to halt the formation of the jump

by damping the highest frequency mode and introduce

phase errors. Secondly, the leading term in the trunca-

tion error of the space-centered scheme used to inte-

grate Eq. (2b) contains a dispersive third-order deriva-

tive. As the jump is approached, the effect of dispersion

is to introduce high amplitude oscillations near the

jump, as can be seen in Fig. 2c, where such oscillations

just begin to form). This effect is suppressed by main-

taining the dispersion (proportional to Dx2) negligible

compared to the diffusion (LeFloch 2002). The first

problem is delayed and the second is remedied by in-

creasing the spatial resolution and choosing the lowest

temporal resolution for which the scheme is stable. The

temporal resolution used in the integrations presented

in the next sections is 1025 and the spatial resolution is

1/450 in m, which translates to a resolution of 0.258 at the

equator, about 0.48 at midlatitudes, and 7.68 at the poles.

Although viscosity is not explicit in the SWM, nu-

merical viscosity is implicitly introduced in any numer-

ical scheme, and it is worth considering its effect on the

solution. Toward this end we have integrated the time-

dependent system with a second-order viscous term

added to Eqs. (2a) and (2b) while keeping the temporal

and spatial resolution unchanged. We found that the

states reached from the same initial conditions were

identical for viscosity coefficients ranging between

10210 and 10220. This comparison indicates that the

results presented in the next section are qualitatively

unaffected by the inclusion of numerical viscosity and

the Eulerian limit of the solutions of Eq. (2b) is ap-

proached by our numerical scheme. The value of the

viscosity coefficient used in the integrations presented

in the next sections is 10215.

c. Numerical solutions of the initial value problem

Time integrations indicate that for 0 , M0 ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p

the equinoctial asymptotic long-time behavior is char-

acterized by a tropical uniform-M region and an extra-

tropical radiative-equilibrium region and that these two

regions are connected by an unsteady transition region

whose width, Dm, decreases monotonically with time. In

the Dm / 0 limit the transition region becomes a tran-

sition point, referred to as mJ 5 sinfJ, at which M is dis-

continuous but V and h are continuous. This limit, how-

ever, is not realized even after times O(103), that is, di-

mensional time O(10 yr). Hereafter we shall refer to this

limit as the (steady) attractor set [VA(m), MA(m), hA(m)]

defined as stable steady states of the equations that are

reached by phase space trajectories after long times.

Equation (2b) is an advection equation for which the

existence of smooth solutions at all times t . 0 is not

guaranteed (cf. Evans 1998). The vanishing of V near mJ

drastically slows down the temporal change in M in the

transition region, causing the discontinuity (or shock) in

M there to be reached only after very long times. For

the reasons described in section 3b, it is not possible to

determine the time it takes the shock to form using the

numerical scheme used in this work. It is clear, however,

that the time it takes the shock to form far exceeds the

duration of a season, allowing us to set it at infinity

without affecting the physical generality and interpre-

tation of our results. In agreement with our previous

analysis, the existence of an ever-narrowing unsteady

transition region suggests that (with the exception of the

two special cases mentioned in section 2b) steady states

are not reached even at long (but finite) times. The state

of the system at sufficiently long times is therefore more

precisely described as a near-steady state (NSS). Let

mT(t) and Dm(t) be the location of the equatorward

boundary of the transition region and the width of this

region, respectively, at time t. The NSS is then defined

by

A schematic illustration of the NSS is given in Fig. 1,

where the uniform-M and radiative-equilibrium steady

states prevail near the equator (Region I) and near the

poles (Region III), respectively, whereas no steady state

›

›t
(V(m, t), M(m, t), h(m, t)) 5 0 for jmj < jmT(t)j and jmj > jmT(t) 1 Dm(t)j

›

›t
(V(m, t), M(m, t), h(m, t)) 6¼ 0 for jmT(t)j < jmj < jmT(t) 1 Dm(t)j.

8><
>: (13)
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is reached in the narrowing transition region between

them (Region II). The asymptotic limit of mT(t/‘)

(and Dm/0) is mJ. Figure 2 displays snapshots (t 520,

200, and 500) of the evolution of the equinoctial NSS

when the system is initiated by

M(m, 0) 5 (1 1 U0)(1� m2),

V(m, 0) 5 0,

and

h(m, 0) 5
1

2
~Kh, (14a)(14b), (14c)

with ~Kh given by Eq. (10) and U0 5 20.1. The three

panels in Fig. 3 display the state of the system at t 5 500

when the system is initiated with U0 5 0, 0.1, and 0.2 in

Eq. (14). The analytically obtained solution (see section

3d) for the angular momentum in the attractor set

MA(m) [given by Eq. (7b) for |m| ,mJ and by Eq. (6b) for

|m| .mJ] is also shown for reference. The total mass,

angular momentum, and energy as a function of time,

corresponding to 0 # t # 100 for the integration of Fig.

2, are shown in Fig. 4. The meridional distribution of the

volume flux Vh, momentum flux VM, and zonal velocity

flux Vu corresponding to Fig. 2b and the states of the

system corresponding to Fig. 3 at t 5 200 are shown in

Fig. 5, which should be compared to Fig. 1 in Walker

and Schneider (2005) and Fig. 7 in HH80. Our scaling of

V on a/t ensures that at sufficiently long times the

nondimensional amplitude of all fluxes is independent

of the value of t and that the three fluxes have the same

scale (cf. Fang and Tung 1997).

The transient behavior that develops when system (2)

is initialized away from the attractor set is characterized

by a strong meridional wind and fast gravity wave os-

cillations that diminish within about t 5 20. The uniform-

M and radiative-equilibrium regions grow from the re-

spective boundaries toward their asymptotic transition

point mJ. The reduced meridional fluxes at the transition

region cause the system to evolve very slowly there, as

seen in Fig. 2, where even at t 5 200 the width of the

transition region is still about 108.

A measure of the narrowing of the transition region

width Df(t) [the counterpart of Dm(t) in degrees lati-

tude] is plotted in Fig. 6a, where fJ � fT(t) [which

corresponds to mJ � mT(t)] is plotted versus time for

two combinations of M0 and RT, both of which yield

mJ 5 0.5 (308): M0 5 1, RT 5 0.204 (solid) and M0 5 0.9,

RT 5 0.0704 (dashed). Degrees of latitude are used in-

stead of m for clarity. The equatorward boundary of the

transition region, fT(t), is defined as the most equator-

ward point for which M(f) , M0. To avoid any ambi-

guity associated with the oscillating poleward boundary

of the transition region, the evolution of fJ � fT(t) is

used as a measure of half the transition region width as

t! ‘ instead of Df(t). In Fig. 6b the amplitude of the

corresponding V(f, t 5 500) is plotted versus latitude

for the two cases. It is evident that the rate of the nar-

rowing of the transition region [indicated by the rate of

increase of fT(t)] follows the local amplitude of V,

which is maximal/minimal near the point in the tropics

where h 5 hf and vanishes close to the transition point.

Identical results to those shown in Fig. 6 were repro-

duced with numerical viscosity coefficients in the range

of 10210–10220 and with a Robert–Asselin time filter

coefficient in the range of 1023–1024, indicating that for

t , 500 the solutions have not been affected by our

choice of numerical parameters.

The subtropical jet (defined as the latitude of maximal

u) seen in Figs. 2 and 3 is located within the boundaries of

the transition region; that is, it forms poleward of, and

slowly shifts toward, mT(t) while strengthening [and while

mT(t) itself slowly moves toward mJ]. Note that the

(rather slow) rate at which M coalesces toward a jump at

mJ is a property of the inviscid, time-dependent, equa-

tions: similar results were encountered with a wide

range of numerical viscosity coefficients explicitly in-

troduced into the numerical scheme, as explained in

section 3b.

For M0 .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
, the uniform-M region is reduced

to a point on the equator (i.e., mJ 5 0; see Figs. 3c

and 7). The tropical cell disappears altogether in this

case and a single westerly equatorial jet forms while

FIG. 1. Sketch of the meridional profile of M in the three regions

of the equinoctial NSS; mT and Dm denote the equatorward

boundary of the transition region and its width, respectively. The

designation of the regions follows the distribution of M: I is steady

uniform-M [M(t) 5 M0], II is unsteady transition region [M(t)

connects M0 with max(MRE) across the transition region], and III

is steady radiative equilibrium [M(t)5MRE 5 (1 2 m2)(1 1 2RT)1/2].
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upgradient fluxes develop near the equator in the, now

tropical, transition region.

d. Analytical solutions for the attractor set

As discussed in section 2b, we may neglect the non-

linear V terms in Eqs. (2a) and (7c) for t . 1 (this is also

a required condition for the self-consistency of the

nearly-inviscid theory; see HH80). Under this approxi-

mation, Eq. (2a) yields a spherical–geostrophic balance

between h9(m,t) and M(m,t) at all times (analogous to

the cyclostrophic balance discussed in Fang and Tung

1996). At steady state, this implies that the only pa-

rameters of the problem are RT (} ag /at) and M0, so mJ

is independent of t. To determine mJ we assume conti-

nuity of h (which plays the role of density) at mJ and

require mass conservation; that is,ðmJ

0

(h� hf )dm 5 0. (15)

Carrying out the integration, one obtains the relation

mJ(M0, RT) by the roots of the transcendental equation:

BE
mJ

1� m 2
J

� 1

2
ln

1 1 mJ

1� mJ

� �" #
5

2

3
m 3

J , (16a)

where

BE 5
M 2

0

1 1 2RT
. (16b)

The attractor sets are given by Eqs. (6a)–(6c) poleward

of mJ and by Eqs. (7a)–(7c) equatorward of mJ. Figure 7a

gives the complete solution for mJ as a function of BE

following Eq. (16a). Solutions for BE . 0.44 are shown

explicitly in Fig. 7b as contours of M0 on the (RT, mJ)

plane. The M0 5 1 contour is identical to the solutions

of Eq. (17) of HH80. The M0 . 1 contours in Fig. 7b and

the M0 . 1 cases in Figs. 3 and 5 represent superrotating

states, which are prohibited by Hide’s theorem, so they

do not represent vertically diffusive steady states.

Nonetheless, these states are presented here for the

completeness of the SWM’s analysis.

Although the analytic estimate for mJ in Eq. (16a) is

obtained by requiring t . 1, numerical integrations of

the time-dependent equations have demonstrated that

solutions of Eq. (16a) were shifted poleward by less than

28 in the limit t � 1, in agreement with the results of

Fang and Tung (1997).

Our numerical integrations indicate that initial con-

ditions in which M(m,0) does not decrease mono-

tonically from the equator to the poles introduce in-

stabilities that can be overcome only by employing

significantly larger numerical viscosities. We therefore

restrict the collection of all initial conditions giving

FIG. 2. Near-steady states at t 5 (a) 20, (b) 200, and (c) 500 initiated with M0 5 0.9, ag 5 18t2, at 5 (2pt)2, and h1 5

0.175 (RT 5 0.16; t 5 20 days). The shapes of M in the attractor set, MA, and of hf are shown for reference in gray. The

dimensional scales for the two heights, h (upper solid) and hf (upper dashed gray); for the two angular momenta, M

(middle solid) and MA (dotted gray); and the zonal velocity u (lower dashed) are given on the left ordinate of (a) and

the dimensional scale of V (lower, dotted) is given on the right ordinate of (c). The formation of the NSS that consists

of a tropical (m , mT) uniform-M region—an unsteady transition region (mT , m , mT 1 Dm) connecting the tropical

region with the extratropical (mT 1 Dm , m) radiative-equilibrium region—is clearly evident in the profile of M. In

(b) and (c) the meridional range in the abscissa is truncated at 608 since poleward of it radiative equilibrium is fully

established at t . 20. The values of (mT, Dm) in (a), (b), and (c) correspond to (fT, Df) of (3.58, 508), (308, 108) and

(358, 58), respectively. For comparison with the analytical estimate, the value of mJ from Eq. (16a) is 0.581 (i.e.,

fJ 535.528).
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rise to trajectories that approach a certain attractor set

(hereafter referred to as the basin of attraction of

that attractor set) to monotonically decreasing profiles

of M between the equator and the poles. This restric-

tion on M(m,0) is consistent with an extrapolation

of Hide’s theorem [which mandates mM9 # 0 every-

where; see Plumb and Hou 1992; Emanuel 1995)] to

the SWM.

The values of the total mass, angular momentum, and

energy of the attractor set, denoted (KA
h , KA

M, KA
e ), can

be calculated by specifying mJ. Using Eq. (16a) for mJ

and neglecting the quadratic V terms, the total angular

momentum is given by

KA
M 5 2

ðmJ

0

M0hf dm 1 2

ð1
mJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
(1� m2)hf dm (17)

and the total energy by

KA
e 5

ðmJ

0

ath(m)
M 2

0

1� m2
1 1� m2 � 2M0

 !"

1 agh(m)2

�
dm 1

ð1
mJ

fathf [2(1� m2)

3 (1 1 RT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
)] 1 agh2

f gdm, (18)

where h(m) is given by Eq. (7b). The explicit algebraic

expressions obtained by carrying out the integrations in

Eqs. (17) and (18) are too complex and unrevealing to

be presented here. We also note that ~Kh is the total mass

in the attractor set; that is, KA
h 5 ~Kh; see Eq. (10).

The total tropical mass flux, often referred to as the

strength of the tropical circulation and denoted here as

FIG. 3. As in Fig. 2c (t 5 500) but the scale of u is 100 m s21: (a) U0 5 0 (M0 5 1.0) with values of mT, Dm, and

mJ (given by Eq. 16a) of 0.4, 0.21 and 0.456, respectively (i.e., fT, Df, and fJ of 248, 148, and 27.118, respectively);

(b) U0 5 0.1 (M0 5 1.1) with values of mT, Dm, and mJ of 0.04, 0.36, and 0.265, respectively (i.e., fT, Df, and fJ of of 28,

218, and 15.358, respectively); (c) U0 5 0.2 (M0 5 1.2) with values of mT, Dm, and mJ of 0, 0.32 (i.e., Df ’ 198), and 0,

respectively. Note that the scale on the ordinate for V is three orders of magnitude smaller than in Fig. 2.

FIG. 4. Angular momentum, Kh, KM, and Ke, for 0 # t # 100,

corresponding to the time series displayed in Fig. 2. Mass (h) is

conserved after t ’ 20 with the predicted value for ~Kh; KM is nearly

conserved after t ’ 50 while the increase in Ke, which is coupled to

the strengthening of the subtropical jet, continues slowly to t/‘

where it asymptotes to the value given by the integrals in Eq. (18).
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KVh, is explicitly calculated by neglecting the quadratic

V terms in Eq. (7c), which yields

KA
Vh 5

ðmJ

0

Vhdm 5
h1(1 1 2RT)

2RT

3 BE ln (1� m 2
J ) 1

m 2
J

1� m 2
J

 !
�

m 4
J

2

" #
. (19)

The value of KVh is determined by h1, RT, and BE; Figs.

8a and 8b show the solutions for KVh in Eq. (19) when

BE and h1 are varied, respectively.

Using Eqs. (16a) and (16b) and Eq. (6b) it can be

easily verified that M decreases monotonically with m in

the attractor set and that

max[(1� m2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
] , M0. (20)

Since the lhs of (20) is the maximum angular momen-

tum in the radiative-equilibrium steady state, the strong

inequality implies that no attractor set exists for which

the radiative-equilibrium and uniform-M states are con-

tinuously connected; that is, in equinoctial forcing no

steady states of system (2) exist other than the two states

given in section 2b.

It is possible to obtain explicit near-steady solutions

for V, M, and h for Dm . 0 by specifying the shape of M

in the transition region and requiring the continuity of

M and h and mass conservation. Solutions obtained

using linear and quadratic approximations for M in the

transition region (not shown) were found to be in agree-

ment with the numerical time integrations once the size

of the transition region has shrunk to less than 158.

It follows from Eq. (16a) that mJ depends strongly and

nonlinearly on M0 and RT. Thus, with reference to the

results of Figs. 2 and 3 and employing the estimates for

the amplitudes of the subtropical and equatorial jets,

uJ 5
M0

cos fJ

� cos fJ

and

ueq 5 M0 � 1, (21a), (21b)

one can draw the following conclusions regarding axi-

symmetric variations (for a fixed value of RT): When M0

is slightly less than 1 (Fig. 2), the tropical cell will widen

and strengthen, the subtropical jet will strengthen [Eq.

FIG. 5. Meridional distribution of the (nondimensional) meridional fluxes corresponding to

the states of the system displayed in Figs. 2 and 3 at t 5 200 for the indicated values of M0. Solid

lines: volume flux (Vh, related to the mass flux via the mean density of the atmosphere) scaled

on 2paH0/t; dotted lines: angular momentum flux (VM) scaled on 2pVa3/t; dashed lines: zonal

velocity flux (Vu) scaled on 2pVa2/t.
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(21a) with M0 # 1, but fJ given by Eq. (16a)] and shift to

higher latitudes (mJ increases), and equatorial easterlies

will form (21b). In contrast, for M0 slightly above 1 (but

less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
: Fig. 3b) one can expect the tropical

cell to narrow and weaken, the subtropical jet to weaken

and shift to lower latitudes, and equatorial westerlies to

form. When M0 .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
(BE . 1: Fig. 3c) the size

of the tropical cell is reduced to zero, making mJ 5 0

so that the subtropical jet becomes a point of disconti-

nuity on the equator coalescing with the equatorial

westerly.

Similarly, for a fixed value of M0 we deduce from Fig.

7b that, when RT is slightly increased, the tropical cell

widens but its strength varies according to Eq. (19) and

the subtropical jet strengthens [Eq. (21a) with M0 fixed,

but fJ given by Eq. (16a)] and shifts to higher latitudes

with no effect on the equatorial easterlies. In contrast,

when RT is slightly decreased one can expect the trop-

ical cell to narrow and the subtropical jet to weaken and

appear at lower latitudes.

Under physically plausible conditions, changes in the

atmosphere are likely to be the result of variations in h1.

FIG. 6. (a) A measure of half the transition region’s width, fJ � fT (t), as a function of time

for two combinations of M0 and RT, both of which yield mJ 5 0.5 (i.e., fJ 5 308): M0 5 1 and

RT 5 0.204 (solid); M0 5 0.9 and RT 5 0.0704 (dotted). (b) The meridional structure of the

amplitude of the corresponding meridional velocities at t 5 500. At earlier times the meridional

structures are similar.

FIG. 7. (a) Solutions of Eq. (16a) for mJ as a function of BE in the range 0 ,BE #1 [BE 5 M0
2/

(1 1 2RT)]; BE 5 1 corresponds to the global uniform-M state and BE 5 0 corresponds to the

global radiative-equilibrium state. For BE . 1 the only solution is the trivial solution mJ 5 0,

which exists for all values of BE. (b) Contours of M0 on the (RT, fJ) plane. The emphasized

M0 5 1 contour is identical to the solutions of Eq. (17) of HH80. The parameters mJ, M0, and RT

completely determine the steady attractor set made up of Eqs. (6a)–(6c) poleward of mJ and

Eqs. (7a)–(7c) equatorward. Note that BE . 0.44 in the ranges of M0 and RT shown in (b).
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Thus, from Fig. 8 we may conclude that an increase in

the equator-to-pole height difference (i.e., an increase

in H1) or a mean cooling of the atmosphere (i.e., a de-

crease in H0) will result in an increase in the axisym-

metric circulation strength and vice versa.

4. Physical considerations of the mass/heat source

A compressible column of air can be heated without

altering its momentum (and vice versa). The coupling of

the temperature and total mass of a column of air by its

height in the incompressible SWM implies that the local

supply of heat takes place by adding mass with the same

local momentum as the fluid. Conversely, a local supply

of mass is coupled to an increase in the temperature of

the column. To resolve some of this ambivalence in the

nature and interpretation of the forcing (i.e., whether it

is heat or mass) we examine in this section the nature of

the source term in Eq. (2c) by considering two modifi-

cations to the SWM: a stationary bottom layer as a mass

source and a total angular-momentum-conserving model.

The former emphasizes the role of the source as a mass

source and the latter compensates for momentum added

to or removed from the system by mass, thereby making

the source a pure heat source. In addition, the contri-

bution of moist convective sources in the SWM is con-

sidered in section 4c.

Other possible sources that can significantly influence

the zonal mean flow at the tropics such as the earth’s

obliquity (which acts as a negative momentum source)

and transient eddies [which act as a positive momentum

source, Lee(1999)] are not treated here.

a. Stationary bottom layer as a mass source

If one assumes that the source of mass is a stationary

bottom layer that does not interact with the upper is-

entropic layer except for the exchange of mass, the

zero relative momentum of the air supplied by the

bottom layer introduces a momentum forcing in Eqs.

(2a) and (2b) of the form (Esler et al. 2000; Shell and

Held 2004)

I
Q

h

V
M � 1 1 m2

� �
, where I 5

�1, Q . 0
0 , Q # 0.

�
(22)

[The upper/lower rows are the source terms for Eqs.

(2a) and (2b), respectively.] For I 5 21 this forcing

introduces an additional steady state in which h is not in

radiative equilibrium and M is not uniform. Consequently,

in contrast to the results presented in section 3, the re-

sulting axisymmetric 1½-layer model (hereafter referred

to as a 1½-SWM) depends very weakly on the choice of

initial conditions. With the addition of the forcing terms of

Eq. (22), system (2) reaches a global radiative-equilibrium

steady state after long times when initiated from a per-

turbation of (i.e., near) the state (3a)–(3c). All other

physically acceptable initial conditions yield a steady state

in which M 5 1 (i.e., u 5 0) at the equator (this result can

be generalized to M 5 1 1 u0 for a nonstationary bottom

layer with velocity u0). This is explained by the symmetry

of the system that mandates VM9 5 0 at the equator so

that, when the forcing is modified according to Eq. (22),

either M 5 1 or h 5 hf must be satisfied.

Thus, the steady state of the 1½-SWM entails a three-

region paradigm: a tropical, mass-acquiring region; a

subtropical, mass-depleting, uniform-M region; and an

extratropical radiative-equilibrium region. Shell and

Held (2004) approximate this state using small m ap-

proximations of the M ’ 1 solutions of Eq. (16a). If we

assume instead that the uniform-M state exists pole-

ward of the latitude, 0 , �m , �mJ (where �mJ denotes the

FIG. 8. (a) Solutions of Eq. (19) for KVh as a function of BE in the range 0.4 ,BE #1 [where

BE 5 M0
2/(1 1 2RT)]. The value of h1 is fixed to 0.175. (b) Contours of M0 on the (KVh, h1) plane

for 0.01 ,h1 ,0.4. The M0 5 1 contour is emphasized.
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location of the subtropical jet in the 1½-SWM), and that

the value of M in this region is close to 1, then the

continuity of h implies that

(1 1 2RT)(1� �m 2
J )(1� �m2) 5 1. (23)

If we also require �m � 1, we obtain the approximation

�mJ ’ ~mJ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT /(1 1 2RT)

p
. (24)

A more accurate approximate solution is obtained by

requiring that h be uniform in the mass-acquiring re-

gion. The state of the system is then approximated by

M 5 1�
�m2m3 � 3

5
m5

3�m2m� m3
,

h 5 �h 5 const, (25)

V 5
2h1

�h
�m2m� 1

3
m3

� �

in the mass acquiring region, by Eqs. (7a)–(7c) in the

mass depleting region, and by Eqs. (6a)–(6c) in the ex-

tratropical radiative-equilibrium region. Solutions of

this state are obtained by requiring the continuity of h at

both �m and �mJ , which yields

BE 5 (1� �m 2
J )(1� �m2), (26a)

where, from Eq. (25), M0 5 1� 1
5�m2, the continuity of M

at �m and the conservation of mass implies that

BE
�mJ � �m

1� �m 2
J

� 1

2
ln

(1 1 �mJ)(1� �m)

(1� �mJ)(1 1 �m)

� �" #

5
�m3

3

1 1 6RT

1 1 2RT

� �
1

2�m 3
J

3
� �m 2

J �m. (26b)

Solutions of Eqs. (26a) and (26b) for �mJ(�fJ), �m(�f), and

~mJ(~fJ) are compared in Fig. 9a with the corresponding

SWM value of fJ given by the M0 5 1 contour of Fig. 7b.

The solution of the time-dependent equations (at t 5

500) of the 1½-SWM initiated by the initial conditions

[(11a)–(11c)] is compared with the state approximated

by Eqs. (26a) and (26b) in Fig. 9b for RT 5 0.16. The

steady solutions of the 1½-SWM differ from those of the

SWM by the existence of a tropical mass acquiring re-

gion that connects continuously to the subtropical, mass

depleting, uniform-M region. The three-region para-

digm of the 1½-SWM appears to be in better agreement

with the numerical results of HH80 (their Fig. 6 for the

lowest viscosity case) than the two-region paradigm of

the one-layer model. As pointed out by HH80, a uni-

form-M region exists poleward of a tropical region in

which vertical mixing of momentum is significant (the

rising branch of the Hadley cell). The monotonic de-

crease of M between the equator and poles and the

discontinuity in M at the transition between the uniform-

M and the radiative-equilibrium regions is also retained

in the 1½-SWM. The monotonic decrease of M man-

dates that its value in the uniform-M region be slightly less

than 1, which accounts for the poleward shift in the lo-

cation of the subtropical jet compared to the M0 5 1 so-

lution of the 1-layer model (the shift is also captured by
~fJ , as shown in Fig. 9a).

b. Conservation of total angular momentum

The conservation of total angular momentum KM in the

presence of a source of mass is achieved by introducing a

momentum forcing in Eqs. (2a) and (2b) of the form

�Q

h

V
M

� �
. (27)

At steady state this addition introduces the constraint

VMh 5 0. (28)

Consequently, since KM is conserved, the steady states

of the total angular momentum–conserving model

have to be either global V 5 0, corresponding to

K̂M 5 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
1
3 1 1

5h1

	 

or M 5 0 (i.e., KM 5 0).

Combinations of the two states are also possible and

these consist of a tropical M 5 0 region that is discontin-

uously connected to an extratropical radiative-equilibrium

region for 0 , KM , K̂M. No steady state exists for

KM . K̂M (in which case M! ‘ at the equator).

However, since KM is conserved throughout the evolu-

tion, the time-dependent solutions of the total angular-

momentum-conserving model are characterized by un-

physically large oscillations about the mean state that

dominate the solution in the absence of dissipation and

lead to instability.

c. Convective heat sources

The inclusion of convective heat sources into the

SWM is obtained by associating high-level divergence

with latent heat release (i.e., a mass source) and, con-

versely, high-level convergence (coupled to low-level

divergence) with a mass sink, as described in Held and

Phillips (1990). This implies an additional source term in

Eq. (2c):

QC 5 kV9, (29)

where k is a positive humidity function. The only effect

this addition has on the two steady states is a correction

to V in the uniform-M steady state:
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V 5 �

ð
(h� hf 1 Vk9)dm

h� k
. (30)

Under terrestrial conditions we may assume sgn(Vk9) , 0.

In addition, for k 5 h Eq. (30) becomes singular.

Therefore, for k , h the incorporation of moisture as a

possible source/sink of heat via the divergence of V does

not incur a loss of generality to the attractor set other

than the intensification of V [whose square remains

negligible in Eq. (7c), not affecting the approximate

expressions for the steady states]. This result is a specific

SWM case of the more general heat sources, discussed

by HH80 and Hou and Lindzen (1992), in whichÐ mJ

0 QCdm 5 0 is satisfied. Using Eqs. (29) and (30), it

follows that, for a constant k and approximating a uni-

form h at the equator, a state in which the convective

forcing approximately equals the radiative forcing at the

equator corresponds to k ’ ½. In the case k 5 const� 1,

the correction to the circulation strength approximately

equals

DKA
Vh 5 k

ðmJ

0

ðm

0

(hf /h� 1)dm9

� �
dm, (31)

where DKA
Vh denotes the convective contribution to the

circulation strength.

To sum up the results of this section: The physically

favored interpretation of the forcing term in system (2)

is that it represents a source of mass (and not heat) in-

jected into the active layer from the underlying passive

bottom layer. As predicted by HH80, the introduction

of moisture into the present model (proportional to $V)

intensifies the circulation’s strength but does not alter

the extent of the tropical cell.

5. Summary and discussion

The use of angular momentum as a dynamical varia-

ble in system (2) yields the simple Eq. (2b) that replaces

Eq. (1b) and immediately identifies the system’s only

two steady states: radiative equilibrium and uniform-M.

FIG. 9. (a) The approximate solution for ~fJ (dotted) corresponding to ~mJ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT /(1 1 2RT )

p
and the

approximate �fJ and �f corresponding to the �mJ and �m roots of Eqs. (26a) and (26b), respectively (both solid

but �fJ . �f) and fJ of the exact M0 5 1 contour of Fig. 7 (dashed). (b) Near-steady state of the 1½-layer

model at t 5 500 for the parameters ag 5 18t2, at 5 (2pt)2, and h1 5 0.175 (RT 5 0.16; t5 20 days) and the

initial conditions [(11a)–(11c)]; hf is shown for reference in dashed gray; M(m) is approximated using Eqs.

(26a) and (26b) and the three-region paradigm (dotted, gray) is distinguishable from M given by the solution

of the time-dependent equations only at the transition region. The dimensional scales for the height (H0, top

solid), the forcing height (top dashed gray), M (Va2, solid), and the zonal velocity u (1 km s21; dotted), are

given on the left ordinate while the dimensional scale for V (m s21; dashed) is given on the right ordinate. The

angular momentum structure clearly shows the formation of three steady-state regions in the 1½-layer

model: a tropical, mass acquiring, region (0 , m , �m), a subtropical, mass depleting, uniform-M region

(�m , m , mT ), and an extratropical radiative-equilibrium region (mT 1 Dm , m). The latter region is con-

nected to the uniform-M region by an unsteady transition region: mT , m , mT 1 Dm. The meridional axis is

truncated at 608, poleward of which radiative equilibrium is fully established at the indicated time.
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The hemispheric symmetry of the problem leaves M0

(the angular momentum at the equator) unchanged

(i.e., set by the initial conditions). The two equinoctial

steady states of system (2) can therefore be reached

only if the value of M0 equals the value of M associated

with either the radiative equilibrium (5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 2RT

p
) or

the uniform-M (5 0) steady state. All other (positive)

values of M at the equator will lead to a near-steady

state made up of a tropical uniform-M region, an ex-

tratropical radiative-equilibrium region, and an ever-

narrowing, unsteady transition region. The long-time

behavior of system (2) is the convergence to an attractor

set, fully described by [mJ(M0, RT), M0, RT], whose basin

of attraction has a one-dimensional representation us-

ing the basin number BE 5 M0
2/(1 1 2RT). It is possible

to introduce the effect of convective heat sources into

the SWM by associating divergence/convergence with a

heat source/sink (Held and Phillips 1990). As discussed

in section 4c, in general this additional source term does

not affect qualitatively the long-time behavior of system

(2) other than the intensification of V.

The geometric simplicity of the basin of attraction

(found in section 3d) results directly from the hemi-

spheric symmetry of the heating. This simple geometry

is expected to change drastically when the hemispheric

symmetry is broken, for example, by off-equatorial

heating (m0 6¼ 0). It is also not clear whether such

a simple geometry exists in axially symmetric two-

dimensional (latitude, height) models since very little

attention has been given in previous studies (e.g., HH80;

Lindzen and Hou 1988) to the dependence of the steady

states on the initial conditions, so the possibility of

multiple attractor sets was not studied.

In viscous two-dimensional (latitude, height) axially

symmetric models (e.g., the HH80 model) Hide’s the-

orem mandates that M be everywhere # 1 that is, u # 1

sin2(f)/cos(f). HH80 theory is a particular case [where

M 5 1, so u(0) 5 0)] of a broader set of solutions of the

forced SWM in which states with M # 1 as well as M . 1

are allowed at the equator, as shown in Fig. 7.

In a 1½-SWM where the mass source is assumed to

be a stationary bottom layer (that injects the mass of

fluid with zero relative momentum) and for physically

acceptable initial conditions, the steady states of the

present SWM were found to be independent of the

initial conditions. These steady states prohibit non-

vanishing zonal velocities on the equator (i.e., they

yield restrictions similar to those of Hide’s theorem).

The attractor set of this 1½-SWM is completely de-

termined by the value of RT and consists of three re-

gions: a tropical, mass acquiring region in which h is

nearly uniform, a subtropical uniform-M region, and

an extratropical radiative-equilibrium region. The an-

alytical solutions of this three-region paradigm are in

better agreement with the numerical results of HH80

and Walker and Schneider (2006) than the SWM. The

main reason for this improved agreement is that the

1½-SWM has intermediate local Rossby numbers in

the tropics, with 0 , Ro 5 (1 1 M9/2m) # 1 (or Ro 5

�z/f in dimensional form, where z is the relative

vorticity), whereas the SWM only supports Ro 5 1 (i.e.,

M9 5 0) there.

The interpretation of the source term as a mass source

is reaffirmed by contrasting the 1½-SWM with an an-

gular momentum–conserving model in which the source

term represents a heat source where the solutions were

found to be physically unrealistic.

The assumption of a nearly uniform-h tropical region

used to obtain approximate accurate solutions of the

1½-SWM is in agreement with the adaptation of the

weak temperature gradient (WTG) approximation to

the shallow-water equations. As was shown by Polvani

and Sobel (2002), the WTG approximation agrees well

with the SWM only for M0 ’ 1 and, as predicted by

Schneider (2006), this approximation is accurate only in

the mass acquiring region of the 1½-SWM.

The state of the system at different times is easily

described using the profile of the angular momentum,

which is discontinuous in the attractor sets of the SWM

and the 1½-SWM. The ubiquity of discontinuous solu-

tions in equations such as (2a) suggests that spectral

methods are inappropriate for long integrations since

these methods suppress discontinuous solutions crucial

to the understanding of the dynamics.

It was reaffirmed here that, as in viscous models, steady

states of the SWM are reached after times much longer

than a season. If time-dependent forcing with a period on

the order of a season is applied, the system can be ex-

pected to always be in a transient state, which limits the

applicability of predictions based on steady-state theories

(including Hide’s theorem). The calculations of Fang and

Tung (1999), however, demonstrate that, for forcing in

which the locus of the maximal heating is allowed to

simulate seasonal variations, the steady solutions are in

good qualitative agreement with the time-dependent

solutions. Thus, while near-steady states are reached at

times that exceed a season, the solutions for the attractor

sets of the SWM and 1½-SWM presented in Figs. 7 and 9,

respectively, and the total mass fluxes presented in Fig. 8

provide a concise qualitative tool for predicting the axi-

symmetric dependence of the subtropical jets and the

circulation strength on parameters such as the earth’s

radius, rotation rate, and differential heating.
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