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ABSTRACT

An axially symmetric inviscid shallow-water model (SWM) on the rotating Earth forced by off-equatorial

steady differential heating is employed to characterize the main features of the upper branch of an ideal

Hadley circulation. The steady-state solutions are derived and analyzed and their relevance to asymptotic

temporal evolution of the circulation is established by comparing them to numerically derived time-

dependent solutions at long times. The main novel feature of the steady-state solutions of the present theory is

the existence of a tropical region, associated with the rising branch of the Hadley circulation, which extends to

about half the combined width of the Hadley cells in the two hemispheres and is dominated by strong vertical

advection of momentum. The solutions in this tropical region are characterized by three conditions: (i) the

meridional temperature gradient is very weak but drastically increases outside of the region, (ii) moderate

easterlies exist only inside this region and they peak off the equator, and (iii) angular momentum is not

conserved there. The momentum fluxes of the new solutions at the tropics differ qualitatively from those of

existing nearly inviscid theories and the new flux estimates are in better agreement with both observations and

axially symmetric simulations. As in previous nearly inviscid theories, the steady solutions of the new theory

are determined by a thermal Rossby number and by the latitude of maximal heating.

1. Introduction

Axially symmetric models of the atmosphere describe

the zonally averaged general circulation when large-

scale eddies are suppressed. The contribution of macro-

turbulent and moist processes to the general circulation

is best understood in comparison with inviscid, dry, ax-

ially symmetric mean states because the latter are spe-

cial cases of the former. Therefore, even though outside

the tropics solutions of axially symmetric models have

limited applicability to the observed atmosphere, such

models are of prime importance in elucidating the rel-

ative role of various processes. A review of the axially

symmetric approach can be found in Schneider (2006).

Schneider and Lindzen (1977) and Schneider (1977)

have shown that contrary to linear theories (e.g., Dickinson

1971), it is possible to maintain Hadley circulations even

with small viscosities if nonlinear terms are not neglected.

Following Schneider (1977), Held and Hou (1980, here-

after HH80) have approximated the Hadley circulation in

the nonlinear inviscid limit by using a simple set of as-

sumptions: the zonal velocity at the ground is negligible

with respect to the balanced wind at the upper branch,

the upper branch conserves angular momentum, and the

cell is energetically closed. The heating used as forcing

in HH80 is Newtonian relaxation toward radiative equi-

librium centered on the equator (equinoctial). The steady

global circulation hypothesized by HH80 therefore follows

a simple two-region paradigm: a tropical region where

angular momentum is uniform, and extratropical re-

gions where radiative equilibrium prevails. The angular

momentum–conserving solutions (hereafter the AMC so-

lutions) of HH80 have been generalized to off-equatorial

heating distributions by Lindzen and Hou (1988, here-

after LH88).

The simplified AMC solutions of HH80 and LH88 as

well as their many extensions (Hou 1984; Schneider

1987; Hou and Lindzen 1992; Plumb and Hou 1992; Fang

and Tung 1996, 1997, 1999; and Polvani and Sobel 2002,

to name a few) assume that the circulation is thermally

driven and that (aside from friction) no sources of mo-

mentum exist, so that in general the absolute angular
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momentum is materially conserved in the inviscid limit.

In recent works, Walker and Schneider (2005, 2006)

have shown that the abovementioned axially symmetric

theories are not successful in predicting the extent and

strength of the observed and simulated zonally averaged

Hadley circulation, and that these theories yield erro-

neous momentum fluxes in the upper branches of the

circulation. The momentum fluxes in any axially sym-

metric model (regardless of its additional assumptions)

can be expected to differ from those of the zonally av-

eraged atmosphere, since these models do not include

momentum sources associated with macroturbulence.

In addition to this inherent difference between axially

symmetric models and the observed atmosphere, the

AMC solutions (of HH80 and LH88) yield erroneous

momentum fluxes (namely, the conservation of angular

momentum) in the upper branches of the circulation even

when compared with two-dimensional axially symmetric

(i.e., eddy-free) simulations (Schneider 2006; see HH80’s

Fig. 6). These erroneous predictions are due to the ne-

glect of vertical mixing of momentum at the rising branch

of the circulation, as was suggested by HH80, Schneider

(1987), LH88, and Walker and Schneider (2005), and are

rectified by incorporating a region of strong mixing into

the solutions, as was shown by Adam and Paldor (2009,

hereafter AP09).

Shallow-water models (SWMs) that incorporate verti-

cal advection of momentum have been used by Esler et al.

(2000) and Shell and Held (2004). In these models, the

flux of angular momentum into the Hadley cell originates

from a stationary bottom layer that acts as a mass source

for the upper layer. A discussion of the effect of the mass–

momentum coupling in the SWM is given in AP09. AP09

also provided steady solutions of an axially symmetric

SWM that accurately predict the momentum fluxes of the

tropical upper branches of the axially symmetric circu-

lation, for equinoctial heating. The AP09 theory differs

from that of HH80 in that at the region of strong mixing,

bottom and upper branch winds are homogenized, thus

relaxing the unphysical HH80 assumption of negligibly

small bottom winds in that region. In addition, AP09 dif-

ferentiate the mixing region from the angular momentum–

conserving region, thus providing solutions that follow a

three-region paradigm instead of the two-region paradigm

offered by HH80. While the existence of a strong mixing

region was recognized by HH80 and LH88, both of these

studies (as well as their numerous subsequent extensions)

did not incorporate this region into their simplified ana-

lytic solutions, even though the width of the rising branch

of the Hadley circulation in their numerical solutions ex-

tends to about half the width of the circulation cell.

The aim of this work is to extend AP09 theory to steady

off-equatorial heating. Reference is made throughout

the work to the AMC solutions in the framework of the

SWM and the derivations of these solutions are given

in appendix A. The model equations and their steady

states are presented in section 2. In section 3 the steady

solutions of the SWM are derived and compared to long

time integrations of the time-dependent equations. The

findings of this work are summarized and discussed in

section 4.

2. Model equations and steady states

a. Model equations

Following AP09, the nondimensional equations of the

axially symmetric, inviscid SWM of a thin layer of fluid

overlaying a stationary layer on the spherical Earth with

a source of mass (height/temperature) Q are

_V 5�VV9� m

1� m2
(a

t
M2 1 V2)

1 (1� m2)(a
t
m� a

g
h9)� I

Q

h
V, (1a)

_M 5�VM9� I
Q

h
(M � 1 1 m2), (1b)

_h 5�(hV)9 1 Q, (1c)

where h is the height, m 5 sinf (where f denotes lati-

tude), V 5 y cosf is the meridional velocity (y) times

cosf, and M 5 cos2f 2 u cosf is the component of ab-

solute angular momentum (angular momentum here-

after) in the direction parallel to Earth’s axis of rotation,

where u is the zonal velocity component. The dot and

prime denote derivatives with respect to time and m,

respectively. The source Q is a relaxation to a prescribed

height hf associated with differential solar heating:

Q 5 h
f
� h; (1d)

h
f
5 1 1 h

1
1� 2(m� m

0
)2

h i
, (1e)

where h1 is the ratio between half the equator-to-pole

height difference H1 and the scale height H0, and m0 is

the latitude of maximal heating. This form of the radiative-

equilibrium height follows the upper branch of the radia-

tive forcing used by HH80 in the m0 5 0 case, by LH88

for the m0 5 const. case, and by Fang and Tung (1999) in

the annually varying m0 case. A constant atmospheric

relaxation time t is used to scale the time t. The problem

is completely prescribed by the nondimensional param-

eters m0 and by

a
t
5 (Vt)2; a

g
5

gH
0
t2

a2
; h

1
5

H
1

H
0

, (1f)
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where g denotes the gravitational constant and a and

V are Earth’s radius and rotational frequency, respec-

tively. The flag I is given by

I(Q) 5
0; Q # 0

1; Q . 0

�
, (1g)

so that vertical momentum mixing with the stationary

bottom layer is enabled in Eqs. (1a) and (1b) only when

mass is injected into the upper layer. In addition, the

following scales are used in nondimensionalizing the

equations: u on Va, M on Va2, y on a/t, and h and hf on

H0. Regularity at the poles [where m 5 61; see Eq. (1a)]

yields the boundary conditions

V(m 5 61, t) 5 0 5 M(m 5 61, t). (1h)

Under typical conditions in the troposphere (H0 ’

10 km, H1 ’ 1.5 km, and for t ’ 2–3 weeks), the values

of the nondimensional parameters in (1f) are at ’ 104,

ag ’ 104, and h1 ’ 0.15. A thermal Rossby number used

in this work as well as in earlier works, given by

R
T

5
2a

g
h

1

a
t

5
2gH

1

V2a2
, (1i)

is the counterpart of the thermal Rossby number of

HH80 and LH88; its typical value is 0.16.

b. SWM steady states

Steady solutions of the SWM are obtained by setting

the lhs of Eqs. (1a)–(1c) equal to zero everywhere. As

shown in AP09, the SWM has three steady states that

follow the sign of the source Q. A radiative-equilibrium

steady state corresponds to Q 5 0, which is given by

V 5 0; (2a)

M2 5 (1� m2)2[1 1 2R
T

(1� m
0
/m)] and, (2b)

h 5 h
f
. (2c)

This steady state is the counterpart of the radiative-

equilibrium state of HH80 and LH88. Similarly, a uniform-

M steady state is given by

V 5

ð
(h

f
� h) dm

h
; (3a)

M 5 M and (3b)

h 5 h
0

1
h

1

R
T

m2 � M
2

1� m2

 !
, (3c)

which exists for Q , 0 and is the counterpart of the

angular momentum–conserving state of HH80 and LH88.

Here M is the constant value of M in this region and h0 is

an integration constant [note that a term proportional to

V2/at is neglected in Eq. (3c); see AP09]. Comparable

expressions for these two steady states have been de-

rived by Schneider (1987) on the equatorial beta plane

and by Shell and Held (2004) for a small angle approx-

imation of the Hadley cell width.

An additional Q . 0 (i.e., mass acquiring) steady state

exists, which for terrestrial circulations is associated with

the rising branch of the Hadley circulation in the tropics.

The combination of Eqs. (1b) and (1c) yields

(MVh)9 5 Q(1� m2). (4)

Integrating the steady-state versions of Eqs. (1c) and (4)

and setting the constants of integration equal to zero

yields

M 5

ð
Q(1� m2) dm

ð
Q dm

# 1. (5)

Since this bound (M # 1) equals the maximal value of M

at the underlying stationary lower layer, Eq. (5) may be

considered an extension to the inviscid SWM of Hide’s

theorem, which states that in a steady, axially symmetric

atmosphere, M attains its maximum at the lower viscous

surface (cf. HH80 and, in more detail, Plumb and Hou

1992). Equation (5) can also be generalized to a non-

stationary lower boundary layer.

Assuming u ’ 0 in the steady-state version of Eq. (1a)

(i.e., M ’ 1 2 m2) at the mass acquiring region yields

h9 ’ � 1

a
g

1� m2

2

V2

1� m2

� �
9
1

QV

h

� �
� 1. (6)

For typical values of ag ; 104, h may be assumed to be

uniform there, which is not the case outside this region

since u increases with latitude because of angular mo-

mentum conservation. Moreover, for ag � 1 the uni-

formity of h in the mass-acquiring region is guaranteed

for any physically realistic source [i.e., Q ; O(1)]. Thus,

by requiring that h be uniform in the tropics, the mass-

acquiring steady state can be approximated by

M 5
1

V

ð
V9(1� m2) dm; (7a)

h 5 h 5 const.; (7b)

V 5

ð
(h

f
� h) dm

h
, (7c)
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where h denotes the constant value of h in this region

and Eq. (7a) is obtained by letting h be uniform in Eqs.

(1c) and (5).

Since the global integral of Q must vanish in a steady

state (to conserve the total mass of air in the atmosphere),

a Q . 0 (mass acquiring) steady state in one region must

be accompanied by the prevalence of a Q , 0 (mass

depleting and angular momentum conserving) steady

state in another region. Moreover, for physically realistic

Q distributions, the width of the region where the Q . 0

steady state prevails must be comparable to that of the

Q , 0 steady state.

In addition, as shown in AP09, regularity at the equator

(for m0 6¼ 0) and Hide’s theorem (for m0 5 0) mandate

that the radiative-equilibrium steady state (Q 5 0) cannot

prevail globally. Thus, any global steady state must con-

sist of all three steady states described above.

The meridional uniformity of temperature (which fol-

lows from the vertical homogenization of the zonal wind

by vertical mixing) in the tropics was also derived by Fang

and Tung (1996) for two-dimensional Boussinesq models,

such as the ones employed by HH80 and LH88. However,

in contrast to the conclusion reached above regarding

the prevalence of the Q . 0 (uniform-h) and Q , 0

(uniform-M) steady states in two separate regions (i.e.,

both M and h cannot be uniform in the same latitude re-

gion), Fang and Tung (1996) have also assumed uniformity

of both angular momentum and temperature throughout

the entire Hadley cell when deriving analytical solutions

for a Hadley circulation that includes intense convection.

As shown by Fang and Tung (1996), the weak temper-

ature gradient and the vertical homogeneity of the zonal

wind are consistent with the thermal wind balance and

both are observed in the rising branch of the Hadley cir-

culation in the zonally averaged tropics. The vertical ho-

mogeneity of the zonal wind, however, means that the

upper branches of the tropic Hadley circulation are in

communication with the viscous bottom boundary. There-

fore, angular momentum conservation cannot coincide

with strong mixing, which explains (regardless of the effect

of eddies) why it is not observed at the rising branch of the

Hadley circulation in the zonally averaged tropics [e.g.,

Vallis 2006, his Fig. 11.2, where u ’ const. , sin2(f)/cos(f)

in the rising branch of the Hadley circulation].

3. SWM steady-state solutions for constant m0

a. Analytical solutions for the SWM attractor sets

As depicted schematically in Fig. 1, steady solutions of

the SWM entail a three-region paradigm: (i) a tropical

(region I) mass-acquiring, uniform-h region given by

Eqs. (7a)–(7c), whose winter and summer boundaries

are �mw and �ms, respectively; (ii) a subtropical (region II)

mass-depleting, uniform-M region given by Eqs. (3a)–

(3c) bounded by mw and ms in its winter and summer

boundaries, respectively; and (iii) an extratropical (re-

gion III) radiative-equilibrium region given by Eqs.

(2a)–(2c) where Q 5 0. In addition, we assume that the

tropics host winter and summer cells, connected at m1

(the latitude where V changes sign) on the summer side

of the equator (where mm0 . 0). The functional form of

V, M, and h in this configuration is referred to as the

attractor set, denoted by [VA(m), MA(m), hA(m)] and

defined as the stable steady states of the time-dependent

equations that are reached by phase space trajectories

after long times. As in the solutions of HH80 and LH88,

these attractor sets involve a discontinuity in MA at the

transition points between the uniform-M and radiative-

equilibrium regions.

The attractor sets of the SWM [VA(m), MA(m), hA(m)]

are obtained in the following manner: requiring the

continuity of h at �ms, �mw, ms, and mw yields

�m
s
5 2m

0
� �m

w
, (8)

M
2

q 5 (1� m2
q)(1� �m2

q) 1 1 2R
T
�

4R
T

m
0

m
q

1 �m
q

 !
, (9)

and

h
0,q

5 1 1 h
1
�

h
1

R
T

m2
q 1 2R

T
(m

q
� m

0
)2�

M
2

q

1� m2
q

" #
,

(10)

FIG. 1. A schematic depiction of the communication of mass

between the upper and lower branch of the circulation and the

meridional profiles of hf and h of the SWM illustrating the relative

locations of mw and ms, the poleward edges of the winter and

summer cells, respectively; �mw and �ms, the winter and summer

edges of the mass acquiring region, respectively; and m0, the lati-

tude of maximal heating. The designation of the regions follows the

sign of Q 5 hf 2 h. Region I is a tropical, mass-acquiring (Q . 0),

uniform-h region; region II is a subtropical, mass depleting (Q , 0)

uniform-M region; and region III is a steady radiative-equilibrium

region (Q 5 0).
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where the subscript q denotes either w or s and where

h0,q and Mq denote the constant of integration and the

value of M in the uniform-M regions, respectively. Im-

posing VA(m1) 5 0 and h(�m
q
) 5 h

f
(�m

q
), VA in region I is

explicitly calculated from Eq. (7c):

V 5 sign(m
q
)

2h
1

h

ðm

m1

(m� m
0
)2 � (�m

q
� m

0
)2

� �
dm. (11)

Accordingly, using Eq. (7a) MA in region I is explicitly

given by

M 5 1� m2 1

1

3
(m

1
� m

0
)3

1 m3
0 � 3m

1
(�m

q
� m

0
)2

h i
(m2 � m2

1)

1
2

3
(�m2

q � 2m
0
�m

q
)(m3 � m3

1) 1
1

2
m

0
(m4 � m4

1)� 2

15
(m5 � m5

1)

8><
>:

9>=
>;

(�m
q
� m

0
)2(m� m

1
) 1

1

3
(m

1
� m

0
)3 � (m� m

0
)3

h i . (12)

From Eq. (12) we obtain for M
q

M
q

5 1 1

1

2
m

0
m4

1 1
1

3
m3

1 �m2
q �

2

15
�m5

q �
1

5
m5

1 1
1

6
m

0
�m4

q �
2

3
m

0
�m

q
m3

1

1

3
m3

1 1
2

3
�m3

q � m
1
�m2

q � m
0
(m

1
� �m

q
)2

. (13)

Finally, the conservation of mass in each cell is given by

ð �m
q

m1

(h� h
f
) dm 1

ðm
q

m
q

(h� h
f
) dm 5 0, (14a)

which yields the explicit relationship

0 5
M

2

q

1 1 2R
T

m
q
� �m

q

1� m2
q

� 1

2
ln

(1 1 m
q
)(1� �m

q
)

(1� m
q
)(1 1 �m

q
)

" #( )
1 m2

q �m
q
�

2m3
q 1 �m3

q

3

1
2R

T

1 1 2R
T

m
1
�m2

q �
2�m3

q 1 m3
1

3
1 m

0
(m

q
� �m

q
)2

1 (m
1
� �m

q
)2

h i( )
. (14b)

Note that Eq. (14) differs from the analogous expression

in Polvani and Sobel (2002, their Eq. 13), since, like Fang

and Tung (1996), they assume that h is uniform (to first

order) over the entire cell and not only in the inner,

strong mixing region as in the present theory. In addi-

tion, while deviations from angular momentum conser-

vation are allowed in the simplified model used by

Polvani and Sobel (2002), these are attributed to a form

of internal friction and not to vertical advection of mo-

mentum. Equations (8), (9), and (14b) form a set of five

nonlinear transcendental algebraic equations for the five

unknowns, mq, �mq (recall that the subscript q stands for

s and w), m1, with Mq given by Eq. (13). It is readily

verified that by setting m0 and m1 equal to zero and

�m
w

5��m
s
, m

w
5�m

s
, one derives the analogous ex-

pressions of the equinoctial case given in AP09.

The attractor sets of the SWM are determined by two

parameters only: m0 and RT. Figure 2 shows the depen-

dence of the relative locations of mq (solid), �mq (dashed),

and m1 (dotted) on RT for f0 [5arcsin(m0)] 5 238 (top)

and 268 (bottom). It is observed that the relative loca-

tions of the regions’ boundaries (and hence the subtrop-

ical jets) are primarily determined by RT, as in the AMC

solutions (cf. with Fig. A2a).

From Eq. (12) it is possible to solve explicitly for the

location and strength of the tropical easterlies. Figure 3

displays the location fE (left panel) and strength uE (right

panel) of the tropical easterlies, defined as the location and

value, respectively, of the tropical minima in the zonal

velocity, which are derived from Eq. (12). The dependence

of the easterlies’ location and strength on f0 are plotted

for RT 5 0.1 (dotted), 0.25 (dashed), and 0.16 (solid),

which represent the range of terrestrially acceptable RT

values (0.1–0.25) and its commonly used value (0.16).

Since for m0 6¼ 0 M is not symmetric about the equator, the

attractor sets of the SWM include easterlies that peak on

the summer side of the equator (i.e., off the equator),

unlike the nearly inviscid solutions of LH88 (see their

Fig. 6), where strong easterlies peak on the equator.

For terrestrially acceptable values of m0 and RT these
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easterlies do not exceed 25 m s21 in the present theory.

The dependence of the location of the tropical easter-

lies on m0 matches the result of Fang and Tung (1999,

their Fig. 3).

The maximal value of V in each cell, approximated

by V(�m
q
) (where Q changes sign), is often regarded as

a measure of the cell strength. Using Eqs. (8) and (11)

and keeping only leading-order powers, one obtains the

following simple approximation for the cell strength

ratio (i.e., the ratio between the cell strength in the

summer and northern hemispheres) Ks/w
V :

Ks/w
V ’

�m
s
� m

1

m
1
� �m

w

5
�m

s
� m

1

m
1
� 2m

0
1 �m

s

5
2m

0
� �m

w
� m

1

m
1
� �m

w

.

(15)

The dependence of this simple approximation of Ks/w
V on

f0 for different values of RT (e.g., Fig. 3) is shown in

Fig. 4. The cell strength ratio Ks/w
V equals 1 for equi-

noctial heating and vanishes nonlinearly with the in-

crease of jf0j (though not as steeply as in the AMC

solutions of LH88) at a rate that decreases with RT.

b. Initial conditions and numerical integrations

Time integrations of system (1a)–(1c) were performed

using a staggered-grid (where h is staggered from V and

M) leapfrog scheme with a Robert–Asselin time filter

(a 5 0.001), identical to the one used in AP09. A detailed

description of the numerical method, the scaling, and

choice of parameters is found in AP09.

The attractor set of the SWM depends very weakly on

the choice of initial conditions. Except for integrations

initiated from a perturbation of (i.e., near) the radiative-

equilibrium state described by Eqs. (2a)–(2c) in which

a global radiative-equilibrium steady state was reached

after long times for m0 5 0 [an off-equatorial global ra-

diative equilibrium state cannot exist due to the singu-

larity on the equator in Eq. (2a)], all physically acceptable

FIG. 2. The dependence on the thermal Rossby number RT of fw

(solid; positive), fs (solid; negative), �f
w

(dashed; positive), �f
s

(dashed; negative) and f1 (dotted; negative), corresponding to mw,

ms, �mw, �ms, and m1, respectively, and denoting the winter and

summer latitudes of the subtropical jets, the boundaries of the mass

acquiring region and the latitude where the winter and summer

cells connect, respectively, for f0, the latitude of maximal heating

(corresponding to m0) of (top) 238 and (bottom) 268.

FIG. 3. The dependence of the (left) latitude fE (corresponding

to mE) and (right) strength uE (m s21) of the tropical easterlies on

the latitude of maximal heating, f0 [5arcsin(m0)] for three values

of RT, the thermal Rossby number. The values RT 5 0.1 (dotted)

and RT 5 0.25 (dashed curves) represent two extremes of terres-

trially acceptable values; RT 5 0.16 (solid curve) represents its

typical terrestrial value. The strength and location of the tropical

easterlies depend primarily on f0, and the location, fE, has the

same sign as f0.

FIG. 4. The ratio between the strengths of the summer and winter

cells, Ks/w
V , as a function of the latitude of maximal heating,

f0 [5arcsin(m0)], for three values of RT. The values RT 5 0.1

(dotted curve) and RT 5 0.25 (dashed curve) represent two ex-

tremes of terrestrially acceptable values; RT 5 0.16 (solid curve)

represents a typical terrestrial value. Note that K
s=w
V strongly de-

creases with jf0j and increases weakly with RT. The summer cell

strength is about 10% of the winter cell strength for approximate

values of jf0j at solstice on Earth.
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initial conditions yielded the steady states predicted by

the three-region paradigm.

It is clear from Fig. 2 that m1 is located in the strong

mixing region. From Eq. (1b), at steady state, since

V(m1) 5 0, u cosf(5M – 1 1 m2) must vanish at that point,

even though no friction was added to the equations.

This result is consistent with the assumptions of LH88,

except that unlike their AMC solutions, in the present

theory M is not uniform there. This result is slightly

different from the one obtained by Schneider (1987),

who showed that in the absence of vertical advection of

momentum, u must physically vanish at that point be-

cause Eq. (1b) may be considered as the c / 0 limit of

a drag term, cu cosf(c , 0) added to its rhs. The dif-

ference between the two approaches lies in the fact that

in the presence of vertical advection of momentum u

must equal the velocity of the bottom layer (stationary

in this case). Therefore, for a nonstationary bottom

layer, the second term on the rhs of Eq. (1b) becomes

�I(Q/h)(M � 1 1 m2 �U
0
), where U0 denotes u cosf

at the bottom layer, in which case u(m1) does not vanish.

A time series of the numerically integrated SWM for

the parameters f0 5 238 and RT 5 0.16 and the initial

conditions, M 5 1 2 m2, V 5 0, and h 5 const. is given in

Fig. 5. At t . 200, the functional form of the analytically

obtained MA (dotted) is distinguishable from the nu-

merically integrated M (solid) only at the transition zone

between the uniform-M and radiative-equilibrium re-

gions. Similar results were encountered in a wide range of

initial conditions. Isolated singular extrema in M may

appear at the poleward boundary of the winter cell be-

cause M is materially conserved there, as can be (hardly)

seen in Fig. 5. The isolated singular extrema do not affect

the steady attractor sets elsewhere (the origin of the iso-

lated singular extrema is elaborated upon in appendix A).

For comparison, a similar numerical integration of the

SWM with the same parameters and initial conditions as

Fig. 5 but in which vertical advection of momentum is

disabled [i.e., I 5 0 everywhere in Eqs. (1a) and (1b),

corresponding to AMC solutions] is shown in Fig. 6. A

more pronounced singular extremum is seen in the pole-

ward boundary of the winter cell because in the absence of

mixing, M is materially conserved throughout the cir-

culation cell. Note that while in the integrations corre-

sponding to the three-region paradigm (Fig. 5) physically

realistic easterlies form on the summer side of the equa-

tor and the cell strength ratio (i.e., the ratio of the summer

and winter cell strengths) is about 0.3, in the results cor-

responding to AMC solutions (Fig. 6) strong equatorial

easterlies form and the summer cell nearly vanishes. In

addition, comparing the three-region, off-equatorial, and

equinoctial solutions shown in Fig. 5 here and Fig. 9 of

AP09 with their AMC counterparts, Fig. 6 here and Fig. 3

of AP09, demonstrates the enhanced deviation from

FIG. 5. Numerical solutions of the time-dependent SWM at t 5 40, 200, and 500. The system is initiated by M 5

cos(f), V(f) 5 0, and h(f) 5 1. The parameters used are f0 5 238 (i.e., m0 5 20.052), t 5 20 days, and h1 5 0.175 so

that ag 5 18t2 5 7200, at 5 (2pt)2 5 1.6 3 104, and RT 5 0.16. The dimensional scales for h (H0, top solid), hf (top

dashed), M (Va2, solid), MA(dashed), and u (km s21, solid) are given on the left ordinate. The dimensional scale for V

(m s21, dashed) is given on the right ordinate. The three regions of the steady attractor set—a tropical, uniform-h

mass acquiring region; a subtropical, mass-depleting uniform-M region; and an extratropical tropical radiative-

equilibrium region—are evident as early as t 5 40 and are fully established at t 5 200; further integration to t 5 500

only further strengthens this three-region structure. At t . 200, the numerically integrated M is distinguishable from

the analytically obtained MA only at the ever-narrowing transition zones between the uniform-M and radiative-

equilibrium regions. The tropical easterlies peak on the summer side of the equator. The meridional range in the

abscissa is truncated at 458, poleward of which radiative equilibrium is fully established at t 5 40.
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angular momentum uniformity as the heating shifts away

from the equator, as was noted by LH88.

4. Summary and discussion

The angular momentum–conserving (AMC) solutions

for the upper branch of the ideal Hadley circulation of

HH80 and LH88 are identical to the solutions of the

forced SWM when vertical advection of momentum from

the underlying boundary layer is disabled (appendix A).

This relationship between the forced SWM without ver-

tical advection of momentum and the AMC solutions

enables a comparison between the latter solutions and

those of the forced SWM with vertical advection of mo-

mentum. Thus, the three-region paradigm described in

the present study can be compared to the two-region

paradigm of AMC solutions in an Eulerian (inviscid)

framework that is free of any spurious effects of the rigid

lid assumption (Walker and Schneider 2005). The inter-

model comparison is best carried out by comparing the

predictions of each of these models with axially symmetric

simulations (e.g., Walker and Schneider 2005; HH80) and

with zonally averaged observations of the atmosphere.

Comparing the observations and simulations with AMC

solutions highlights the following shortcomings:

(i) AMC solutions predict a cross-hemispherical

uniform-M region that does not exist in axially sym-

metric simulations. Instead, in axially symmetric

simulations, vertical advection of momentum at

the tropics (that can extend to over half the total

circulation width) causes nonuniformity of the angu-

lar momentum there (e.g., Walker and Schneider

2005). Thus, the uniform-M region prevails only at

the outer portions of the Hadley circulation (e.g.,

HH80, their Fig. 6).

(ii) Off-equatorial AMC solutions predict strong tem-

perature (height) gradients at the tropics, which are

not observed even in winter and were not encoun-

tered in axially symmetric simulations such as LH88.

In addition, the off-equatorial heating AMC solu-

tions predict unphysical strong easterlies that peak

right on the equator even for small displacements

of the latitude of maximal heating whereas the

observed and simulated equatorial jets are weak

and peak away from the equator.

(iii) The ratio of the summer and winter Hadley circu-

lation strengths in the AMC solutions is sensitive to

small displacements from the equator of the latitude

of maximal heating (f0). In addition, for the same

thermal Rossby number RT, the winter Hadley cell

produced by off-equatorial heating is much stronger

than either of the cells of equinoctial heating even

for small m0, so AMC solutions predict an annually

(summer and winter) averaged Hadley circulation

that is much stronger than the annually averaged

circulation of equinoctial heating even for small m0.

This prediction is in contrast to the observed (Dima

and Wallace 2003) and simulated (Walker and

Schneider 2005) annually averaged Hadley circu-

lation strength, which is up to twice the equinoctial

heating Hadley circulation strength.

FIG. 6. As in Fig. 5, but with vertical advection of momentum from the underlying bottom layer missing from the

SWM—that is, the SWM analog of the AMC solution (sketched in Fig. A1). The initial conditions and values of

model parameters are identical to those of Fig. 5, which yields BE 5 0.76 and BS 5 20.013 for this model. A tropical,

uniform-M region is established as early as t 5 200, at which time a singular M 5 1point starts to form at the poleward

boundary of the winter cell because of the extremum principle. The M , 1 uniform-M region results from BE . B0 for

the above choice of parameters and it overrides the M 5 1 initial condition at the equator. These features persist and

sharpen through t 5 500.
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In contrast to the predictions of the two-region AMC

solution paradigm, the new features of the solutions that

result from the three-region paradigm of the present

study are the following:

(i) The rising branch of the Hadley circulation is de-

scribed as a strong vertical mixing region in which

the temperature gradient is very weak and angular

momentum is not conserved. The temperature gra-

dients drastically increase with latitude in the neigh-

boring angular momentum conserving regions that

lie poleward of this region.

(ii) The angular momentum conserving and strong

mixing regions have similar meridional extents, as

observed in two-dimensional simulations.

(iii) Off-equatorial heating produces physically realistic

easterlies that peak on the summer side of the

equator and are close to it.

(iv) The sensitivity of the Hadley circulation strength to

small values of m0 in the three-region paradigm so-

lutions is reduced compared to that of the AMC

solutions, and is therefore in better agreement with

the observed and simulated circulation.

The above comparison reaffirms that the shortcomings of

the AMC solutions listed here are solely due to the mis-

representation of vertical advection of momentum in

these solutions (i.e., they do not result from friction or

from the rigid lid assumption). Furthermore, in contrast

to the two-region paradigm of the AMC solutions, the

incorporation of vertical advection of momentum man-

dates solutions that follow a three-region paradigm: a

tropical, mass-acquiring, weak temperature gradient re-

gion; subtropical mass-depleting, uniform-M regions (in

which the temperature gradient is not weak); and extra-

tropical radiative-equilibrium regions. In addition, since

the source of mass changes sign between the mass-

acquiring and mass-depleting regions, these regions must

be of comparable extent (for physically realistic distri-

butions of the source) for the total mass to be conserved.

A direct consequence of the three-region paradigm

advocated in the present study is that the tropical, strong

mixing region is well described by letting h (viewed as the

temperature) be uniform there in steady state. Using this

approximation (as well as the trivial continuity of M and h

and conservation of mass), the locations of the bound-

aries of the three steady-state regions are explicitly given

by the roots of a set of nonlinear transcendental algebraic

equations [i.e., Eqs. (8), (9), and (14b)]. In addition, the

functional form of V, M, and h within each of these re-

gions is explicitly given by Eqs. (2), (3), and (7). Our

numerical integrations of the time-dependent equations

for long times indicate that the solutions obtained by the

uniform-h approximation accurately predict the steady

attractor sets of the model. The uniformity of h in the

tropical strong mixing region results from the vanishing

zonal winds there [see Eq. (6)]. However, as shown in

Fig. 3, the equatorial easterlies strengthen as the location

of maximal heating (f0) shifts away from the equator.

Appreciable deviations from uniform h in the tropical

strong mixing region in our numerical integrations of the

time-dependent equations for long times are observed

for f0 . 98. As in the AMC solutions, the three-region

paradigm solutions are determined by the thermal Rossby

number and the latitude of maximal heating.

The width of the Hadley circulation and the relative

locations of the subtropical jets and their amplitudes are

not well captured in both the AMC solutions and the

present three-region solutions. These shortcomings of

the steady-state solutions are attributed to the fact that

the atmosphere is never at a steady state and to the ab-

sence of diffusion and eddies that are driven partly by the

subtropical jets. However, in contrast to the predictions

of the AMC and the three-region solutions in the mid-

latitudes, physically realistic easterlies are predicted by the

three-region solutions in the tropical strong mixing region,

suggesting that eddies have a weak influence on the cir-

culation there. This result is in agreement with Lee (1999),

who showed that momentum fluxes in the deep tropics are

dominated by the transient meridional circulations. The

influence of eddies on the Hadley circulation strength may

be clarified by further investigation of the time-dependent

properties of the annually varying idealized circulation.
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APPENDIX A

AMC Solutions for Constant m0 in the SWM

a. The extremum principle and initial conditions

The AMC solutions in the framework of the SWM are

obtained by disabling vertical advection of momentum

(AP09). Steady states are therefore obtained by setting

the lhs of Eqs. (1a)–(1c) to zero and setting I 5 0 every-

where. By setting I 5 0 everywhere, Eq. (1b) simply states

the material conservation of M. It is well known that

extremum values of materially invariant quantities are

conserved (see appendix B for a derivation of the ex-

tremum principle in the context of the present SWM), so

that the steady states of the SWM (without vertical
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advection of momentum) are expected to strongly de-

pend on initial conditions. The initial conditions con-

sidered in this work include only initial distributions of

M with a single extremum value (point or section) from

which M decreases monotonically to the poles. For

similar initial conditions, the extremum principle was

used by AP09 in the equinoctial case (m0 5 0) to de-

termine that the value of M at the equator (where V 5 0)

is a constant set by the initial conditions. When the

hemispheric symmetry is broken by off-equatorial

heating, the maximal value of M remains a constant set

by the initial conditions, but its location is no longer fixed to

the equator. The values of M that are physically allowed by

Hide’s theorem have to satisfy M # 1.

b. Analytical AMC solutions in the framework
of the forced SWM

We assume that at steady state the circulation is

composed of a tropical uniform-M region and extra-

tropical radiative-equilibrium regions that connect to

the tropical region at transition points in the winter (mw)

and summer (ms) hemispheres. Figure A1 is a schematic

depiction of the meridional profile of MA (solid), VA

(dotted), and hf (dashed). At the winter and summer

transition points MA is discontinuous. The transition

points mark the limit approached by the time-dependent

equations, in which an ever-narrowing unsteady transi-

tion region exists between the steady regions (AP09).

We solve for the steady attractor sets [VA(m), MA(m),

hA(m)] by requiring the continuity of h at both ms and mw,

which yields the relationship

B
E

5 (1� m2
w)(1� m2

s ) 1� 2B
S
/(m

w
1 m

s
)

	 

, (A1)

where the steady-state parameters BE and BS are de-

fined by

B
E

5
M

2

1 1 2R
T

and (A2a)

B
S

5
2R

T
m

0

1 1 2R
T

, (A2b)

and in which M is a constant set by the initial conditions

(due to the extremum principle). On the Earth the rel-

evant values of these parameters are 0.6 , BE , 0.8 and

jBSj, 0.06. In addition, we require conservation of mass

in each cell:

ðm
q

m1

(h
f
� h) dm 5 0, (A3)

where mq denotes either ms or mw. Explicit integration of

Eq. (A3) for the summer and winter cells yields
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1
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respectively, where h is given by Eq. (3c). It is readily

shown that setting m0 5 0, m1 5 0, and ms 5 2mw 5 mJ

yields

B
E

m
J

1� m2
J

� 1

2
ln

1 1 m
J

1� m
J

� �� �
5

2

3
m3

J , (A5)

which is the equation obtained by AP09 for mJ, the

hemisphere-independent transition point (and the lo-

cation of the subtropical jet) in the equinoctial case. As

was shown in AP09, the roots of Eq. (A5) are identical to

the roots of Eq. (17) in HH80 for M 5 1. Similarly, the

roots of Eqs. (A1) and (A4) are identical to the AMC

solutions of LH88 upon substituting M 5 1� m2
1 into

Eqs. (A1) and (A4).

These results echo those of HH80 and LH88 in the

SWM framework. However, whereas in the SWM M is

FIG. A1. A schematic depiction of the meridional profiles of the

angular momentum M, the meridional velocity V, and the forcing

height hf of the steady SWM without vertical advection of mo-

mentum, representing the SWM counterpart of AMC solutions.

Note that M, V, and hf are all plotted on the same vertical axis in

arbitrary units, illustrating the relative locations of mw, the pole-

ward edge of the winter cell; ms, the poleward edge of the summer

cell; m1, the latitude at which the winter and summer cells connect

(and where V changes sign); and m0, the latitude of maximal

heating. The designation of the two steady-state regions is as fol-

lows: a tropical uniform-M region (II) and an extratropical radiative-

equilibrium region (III).
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a parameter whose value is set by the initial conditions,

in the AMC solutions of LH88 M is determined by

requiring that the zonal velocity vanish at the separa-

tion point between the summer and winter cells [i.e.,

u(m1) 5 0]. It is therefore not guaranteed that AMC

solutions in the SWM exist for all initial conditions. The

dependence of solutions to Eqs. (A1) and (A4) on BE for

different values of BS (including the equinoctial, BS 5 0

case) is shown in Fig. A2a. A cutoff value of BE at which

the summer cell vanishes (i.e., m1 5 ms) exists for each

BS. This cutoff value, denoted B0, is shown in Fig. A2b as

a function of BS. AMC solutions of the attractor sets that

follow the two-region paradigm described in Fig. A1

exist only for BE # B0 (i.e., below the curve displayed in

Fig. A2b). In Fig. A2, BE $ 0 and BS # 0 so that mw $ 0

and m1 and ms # 0. This phase space is symmetric with

respect to the sign of mBS.

Let (ms*, m1*, mw*) and (ms, m1, mw) denote the solutions

of Eqs. (A1) and (A4) for the sets (BE*, BS*) and (BE, BS),

respectively. Then the results shown in Fig. A2 imply

that for

B
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while for
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In addition, it is apparent from Fig. A2a that the relative

locations of ms, m1, and mw are determined primarily by BE.

c. Initial conditions and numerical integrations

The extremum principle mandates that for the attrac-

tor sets determined by solutions of Eqs. (A1) and (A4),

the value of M in the uniform-M region must equal the

single maximum of M in the initial conditions, so that BE

is set by the initial conditions. Our numerical results

indicate that initial conditions for which there exists a m1

in the solutions of Eqs. (A1) and (A4) that satisfies

m
1
2 m

x
; M 5 M

x
, B

E
, B

0
, (A7)

where Mx denotes max[M(0, m)] and mx denotes the

interval in which M 5 M
x
, yield the AMC attractor sets

determined by the solutions of Eqs. (A1) and (A4) and

shown in Fig. A2a. For initial conditions that do not

satisfy condition (A7), the maximum in M travels to the

winter hemisphere where it becomes (asymptotically)

an isolated extremum point at mw. The uniform-M re-

gion that forms on its equatorward side has M , M
x
. For

example, for RT 5 0.16 and M 5 1, the summer cell

vanishes (m1 5 ms) for jm0j 5 2.48 (or jBSj ’ 0.01). For

jm0j . 2.48 (i.e., BE . B0), the system evolves into

a combination of an AMC attractor set that satisfies

BE # B0 and an unphysical isolated singular extremum

point at mw at which M 5 1. Figure 6 is a time series of

the above example, initiated with a single maxima at the

equator [M(0, 0) 5 1] and m0 5 238. The isolated singular

M 5 1 point and the M , 1 uniform-M region are clearly

observed. Since at long times such singular extremum

points are inevitably either numerically or physically

diffused, attractor sets that include these points are un-

physical artifacts resulting from the absence of viscosity

in the SWM.

APPENDIX B

1D Extremum Principle

In this appendix we wish to derive an extremum prin-

ciple for all 1D materially conserved quantities, such as

angular momentum in the SWM.

Consider a materially conserved quantity E, such that

_E 1VE9 5 0. (B1)

Let 21 # mx(t) # 1 be the (time dependent) point where

the extremum of E in the interval [21, 1] is located.

From Eq. (A1) we obtain

FIG. A2. (a) The dependence of fw (solid curve, positive values),

fs (solid curve, negative values), and f1 (dashed curve, negative

values) on BE [5M
2
/(1 1 2RT )] for BS 5 0 (equinoctial case),

20.01, 20.03, and 20.05 [where BS 5 2RTm0 /(1 1 2RT)]. Here fw,

fs, and f1 denote the winter and summer latitudes of the sub-

tropical jets and the latitude where the winter and summer cells

connect, respectively. The corresponding values of mw, ms, and m1

are related to fw, fs, and f1, respectively, by the general m 5 sin(f)

relation. (b) The dependence of B0 (which denotes the cutoff value

of BE at which ms 5 m1) on BS. Physically realistic attractor sets

exist only for BE # B0.
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Let Ex 5 E[mx(t)] be the value of E at the extremum

point. The total derivative of E there is given by

dE
x

dt
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Thus, an extremum value of E is constant in time,

propagating in the domain [21, 1] at a velocity V(mx(t)).

Conversely, extrema that are not present at t 5 0 cannot

exist at t . 0.

Next, consider a uniform distribution of E over a

subinterval [m2(t) m1(t)] and let Ex be the value of E in

this subinterval. The rate of change of the slope of E is

given by

_E9 5 �VE0� V9E9, (B4)

so that the uniformity of E in the subinterval implies that

_E9 5 08m�, m , m
1

, (B5)

indicating that a subinterval in which E is uniform can

only change at its boundaries while at all interim points

the value of E is conserved. For consistency, it can be

shown that this extremum principle for a subinterval

degenerates to the extremum principle at a point in the

limit m1 2 m2 / 0.

This principle can be extended to the two-dimensional

inviscid free shallow-water equations where it domi-

nates the potential vorticity dynamics.
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