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ABSTRACT

The interaction of midlatitude eddies and the thermally driven Hadley circulation is studied using an

idealized shallow-water model on the rotating sphere. The contributions of the annually averaged differential

heating, vertical advection of momentum from a stationary boundary layer, and the gross effect of eddies,

parameterized by Rayleigh damping, including a hemispherically asymmetric damping, are examined at

steady state.

The study finds that the relative dominance of eddies, as quantified by the local Rossby number, is predicted

by an effective macroturbulent Hadley circulation Prandtl number Pr. In addition, viscous solutions of the

Hadley circulation width and strength, subtropical jet amplitude, and equator-to-pole temperature difference

scale as deviations from the respective inviscid solutions.

Semianalytic solutions for the steady circulation are derived in the limit of weak eddy dominance (small Pr)

as deviations from the respective inviscid solutions. These solutions follow a three-region paradigm: weak

temperature gradient at the ascending branch of the Hadley circulation, monotonically decreasing angular

momentum at the descending branch, and modified radiative–convective equilibrium at the extratropics.

Using the three-region solutions, scaling relations found in the full solutions are reproduced analytically.

The weak eddy-dominance solutions diverge from the full solutions as Pr increases and may become invalid

for Pr . 1 due to the breakdown of the three-region global circulation structure.

The qualitative predictions of the response of the Hadley circulation to heating based on the weak eddy-

dominance solutions and Pr are in agreement with the findings of more complex models and the observed

atmosphere.

1. Introduction

The Hadley circulation (HC) is a central element of

Earth’s climate, transporting heat and momentum pole-

ward and affecting the extent of the wet tropical and dry

subtropical regions, and the properties of the midlatitude

baroclinically unstable region. Understanding how the

extent of the wet and dry regions, theHC strength (HCS),

and the properties of the subtropical jets respond to var-

iations of external parameters is therefore critical for

understanding Earth’s climate.

Recent studies show fundamental discrepancies be-

tween the predictions of comprehensive global circula-

tion models (GCMs) and observations of the HC width

and strength (Mitas and Clement 2005; Johanson and Fu

2009). These discrepancies could result from the short-

comings of observational products (Santer et al. 2005),

hydrological cycle parameterization (Held and Soden,

2006), or inherent sensitivity due to nonmonotonic de-

pendence on heating (Levine and Schneider 2011). This

highlights the need for improved understanding of the

dynamics of the HC in the presence of eddies.

Outside the deep tropics, the mean meridional circula-

tion momentum and heat fluxes are dominated by eddies.

Eddies, however, are not necessary for the maintenance

of the HC. Schneider (1977) has shown that an HC forms

in the limit of vanishing viscosity (the so-called nearly

inviscid limit) if advection of zonal momentum is not

neglected. Following Schneider (1977), Held and Hou

(1980, hereafter HH) argued that in the limit of vanishing

viscosity, the steady global circulation divides into two

regions: a tropical thermally driven HC, in which angular

momentum is conserved; and an extratropical region in

radiative–convective equilibrium, in which themeridional

wind vanishes. By requiring that (i) the heating at the
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ascending branch is balanced by the cooling at the de-

scending branch of the HC, (ii) the temperature field is

continuous, and (iii) zonal winds at the surface are negli-

gible relative to the winds aloft, the extent of the HC and

the temperature and velocity fields can be calculated

explicitly. For annually averaged heating, their result-

ing inviscid HC had a similar extent, weaker circulation

strength, and stronger subtropical jets than the observed

zonally and annually averaged atmosphere. These angu-

lar momentum–conserving (AMC) solutions of HHwere

extended to off-equatorial heating by Lindzen and Hou

(1988) and time-dependent forcing by Fang and Tung

(1999).

The weak horizontal temperature gradients character-

izing the tropics can also be used as a simplifying as-

sumption in dynamical models of theHC (e.g., Sobel et al.

2001). Satoh (1994) and Fang and Tung (1996) have

shown that the HC width can be determined as the extent

of the region in which temperature may be assumed uni-

form. The physical motivation for this assumption is that

if convection is assumed to occur at a thin intertropical

convergence zone, then the temperature at this zone

constrains the temperature at the rest of the cell in the

inviscid limit (cf. Emanuel et al. 1994).

Axisymmetric nearly inviscid theory poorly predicts

the atmospheric circulation outside the deep tropics,

both in observations and in eddy-permitting models (e.g.,

Schneider 2006). Existing eddy–mean flow interaction

theory on the global scale is mostly restricted to sophis-

ticated, highly parameterized models. A simple theory of

the general circulation in which eddies and the thermal

driving of the circulation play comparable roles in de-

termining the properties of the HC does not exist (cf.

Schneider 2006; Pfeffer 1981; Becker et al. 1997; Kim and

Lee 2001).

Held (2000) suggested a simple principle that deter-

mines the HC width in the presence of eddies: the HC

ends where the thermally driven jet either first becomes

unstable or reaches the latitude predicted in the nearly

inviscid limit. To obtain an explicit scaling relation for the

HC boundary, which requires an explicit solution for the

tropical region, Held assumed angular momentum con-

servation, even though this assumption does not hold in

the presence of eddies. Despite this inconsistency, there is

some evidence that the edge of the HC scales as Held

suggested in GCMs of varying complexity (e.g., Lu et al.

2007; Walker and Schneider 2006; Kang and Lu 2012).

Shallow-water models (SWMs) provide a simple plat-

form for modeling the upper branch of the HC (e.g.,

Polvani and Sobel 2002 and references herein). Indeed,

the angular momentum–conserving solutions of HH and

Lindzen and Hou (1988), derived for the upper branch of

a Boussinesq fluid on the rotating sphere, are identical

to solutions derived using a shallow-water model on the

rotating sphere (AdamandPaldor 2009, 2010a). Similarly,

Polvani and Sobel (2002) derived solutions of the upper

branch of the HC based on a shallow-water model by

assuming a weak temperature gradient throughout the

HC. Unlike Satoh (1994) and Fang and Tung (1996),

however, in which both angular momentum and tem-

perature are assumed uniform, the weak temperature

gradient solutions of Polvani and Sobel (2002) do not

require the conservation of angular momentum and thus

permit parameterized eddy damping. While neglecting

the temperature gradient outside the ascending branch of

the HC is not strictly justifiable, Polvani and Sobel (2002)

showed that the weak temperature gradient solutions are

in good agreement with the steady states of their model.

More importantly, the assumption of a weak temperature

gradient holds in the presence of eddies,making solutions

based on this assumption unique, in that they represent

the only known case in which semianalytic solutions of

the HC width and strength can be obtained with param-

eterized eddy damping.

Inspection of the numerical solutions of the model

employed by HH, Lindzen and Hou (1988), and Fang

and Tung (1999) (Boussinesq fluid allowed to vary in

latitude and height on a rotating sphere, bounded by

a rigid lid) reveals that the ascending and descending

branches of the HC differ considerably. As shown in

Fig. 1, adapted from HH, even at the lowest viscosity for

which stable solutions were obtained, angular momen-

tum is conserved at the subtropics but is not conserved at

the deep tropics. As suggested by HH and Lindzen and

Hou (1988), strong vertical mixing prevents the conser-

vation of angular momentum at the ascending branch of

the HC. Schneider (1984, 1987) suggested that explicit

FIG. 1. Adapted fromFig. 6 ofHH.Dependence on latitude of the

difference from the predicted angular momentum level (divided by

Earth’s radius a), Va sin2(f) 2 u cos(f), at the top of the tropo-

sphere, where V is the rotational frequency of Earth. Shown are

results at steady state for various values of vertical diffusion n.
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inclusion of vertical momentum fluxes may be consid-

ered as a different nearly inviscid limit in better agree-

ment with observations.

Adam and Paldor (2009) noted that while vertical

advection of momentum (VAM) prevents angular mo-

mentum conservation in the ascending branch of the

HC, a weak temperature gradient assumption is valid in

this region. Vertical advection of momentum, however,

does not affect the descending branch of the HC in the

inviscid case, allowing for conservation of angular mo-

mentum there. Thus, they suggested a three-region par-

adigm of the mean meridional circulation for the steady,

inviscid circulation: weak temperature gradient at the as-

cending branch of the HC, angular momentum conser-

vation at the descending branch, and radiative–convective

equilibrium at the extratropics. Adam and Paldor (2009)

derived semianalytic solutions for the axisymmetric

upper branch of the HC in the presence of vertical ad-

vection of momentum from a stationary boundary layer,

which reproduce the angular momentum profile shown

in Fig. 1.

Support for a three-region paradigm is found in the

zonally and annually averaged atmosphere. The annually

and zonally averaged upper troposphere can be described

as being barotropic at the ascending branch of the HC

and polar regions, and baroclinic atmidlatitudes. Figure 2

shows the dependence on latitude of the vertical average

between the 500- and 200-mb levels of the annually and

zonally averaged temperature (solid), meridional wind

(dashed), and vertical wind (dotted). The annually av-

eraged ascending branch of the HC is thus very clearly

observed as a positive vertical velocity (w) region,

bounded by themaxima in the polewardmeridional wind

and characterized by a weak temperature gradient.

Thus, while inviscid models poorly predict the proper-

ties of simulated and observed HC, a three-region ap-

proachmay still be justified in studying themacroturbulent

HC. In the limit of weak macroturbulence, a weak-

temperature-gradient approximation is still valid at the

ascending branch of the HC, while angular momentum

conservation at the descending branch of the HC and

radiative–convective equilibrium at the extratropics are

modified relative to their respective inviscid states.

In this work we seek to study general aspects of the

effect of eddies on the HC by (i) assuming a three-region

structure of the mean meridional circulation; (ii) using

simplified eddy parameterization; (iii) comparing and

relating the inviscid and viscous (i.e., eddy permitting)

steady states of the simplifiedmodel; and (iv) establishing

an analytic framework for deriving semianalytic solutions

of the steady states of the viscous system, which is ap-

plicable to general forms of eddy parameterization. We

therefore employ a shallow-watermodel inwhich vertical

advection of momentum and eddy momentum flux di-

vergence are given simplified parameterizations.

In section 2 we present the model. In section 3 we re-

view the known inviscid solutions of themodel. In section

4 we report the results of a wide parameter sweep of the

steady states at long times of the time-dependent model

and compare these steady states with the respective in-

viscid solutions. In section 5 we derive semianalytic so-

lutions for the steady viscous states as small deviations

from the inviscid solutions, followed by a summary and

discussion in section 6.

2. Model equations

To model the upper branch of the HC, we employ

a differentially heated SWMon the rotating sphere, with

vertical advection of momentum from a stationary

boundary layer and Rayleigh damping. This model dif-

fers from the one described in Adam and Paldor (2010b)

and Shell and Held (2004) only in its representation,

which better serves the semianalytic solutions presented

in section 5. A similar model is discussed in Held and

Hoskins (1985). For clarity, the model representation is

derived below.

The shallow-water equations (e.g., Gill 1982) on the

spherical Earth [with radius a, and latitude (f) and

longitude (l) coordinates] rotating about its polar axis

(frequency V but no centrifugal acceleration) with a

FIG. 2. The dependence on latitude of the annually, zonally, and

vertically (200–500-mb levels) averaged temperature (K–200, solid)

meridional (dashed) and vertical (dotted) winds [National Centers

for Environmental Prediction–National Center for Atmospheric

Research (NCEP–NCAR) reanalysis, long-term monthly averages

for the years 1979–2010). For presentational clarity, temperature is

shown as T 2 200 K, and the meridional and vertical winds are

brought to scale by using units of 1/50 and 1/1000 m s21, respec-

tively. The ascending branch (w . 0) of the annually averaged

Hadley circulation, subtended by the poleward maxima in the me-

ridional wind and characterized by a weak temperature gradient, is

shaded. A horizontal zero line (dashed) is added for reference.
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source of mass (height) Q, vertical advection of mo-

mentum from a stationary bottom layer and Rayleigh

damping are given by
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whereD/Dt5 ›/›t1 [u/(a cosf)](›/›l)1 (y/a)(›/›f) de-

notes the material (total, Lagrangian) derivative in spher-

ical coordinates; g is the gravitational constant; r is the

Rayleigh coefficient of damping; u and y denote the lon-

gitudinal and meridional velocity components, respec-

tively; and h denotes the thickness of the free troposphere.

The source is given asNewtonian relaxation to a prescribed

radiative–convective equilibrium height hf as follows:

Q5
hf 2 h

t
, (1d)

where

hf 5H01DH

�
1

2
2 (sinf2 sinf0)

2

�
. (1e)

Here, t is a constant atmospheric thermal relaxation time

(typically 2–3 weeks), H0 is the tropospheric height scale

(;10 km), DH, the equator-to-pole temperature (height)

difference (EPTD ; 3 km) at radiative–convective equi-

librium, and f0 is the latitude of maximal heating. This

prescribed form of hf follows the upper branch of the ra-

diative forcing used by HH for heating centered at the

equator (f0 5 0, equinoctial case) and Lindzen and Hou

(1988) for off-equatorial heating (f0 6¼ 0). Following

Schneider (1987), the term hf /t is ascribed to the contri-

butions of solar and latent convective heating, and2h/t is

ascribed to longwave radiative cooling.

The heaviside function I is given by

I(Q)5

�
0; Q# 0

1; Q. 0
, (1f)

so that momentum is conserved locally when mass from

the stationary bottom layer enters the upper layer.

Equations (1a)–(1f) are nondimensionalized using

the following scales: u and y on Va, t, t; 1/r on 1/V;

and h and hf on H0. Absolute angular momentum,

M5 cosfa(Va cosf1 u), is scaled by Va2. To simplify

the subsequent analysis, we make the following sub-

stitutions in system (1): M for u, V 5 y cosf for y, and

m 5 sinf for f. Axial symmetry is introduced by setting

the longitudinal derivative equal to zero. Using (�)9 to
denote ›/›m, these substitutions yield the following non-

dimensional system:
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where

hf 5 11Dh

�
1

2
2 (m2m0)

2

�
; and (2e)

a5
gH0

V2a2
(2f)

is the planetary Burger’s number with a typical value of

0.45. Since g, V and a may be assumed fixed in Earth’s

atmosphere, variations in a are attributable to H0, which

we also interpret as the mean global temperature. Simi-

larly, we attribute Dh to the differential heating of the sun.

We interpret r as modeling the gross effect of eddies

on the HC. Figure 3 shows a long-term annual mean of

FIG. 3. Long-term annual and zonal mean of the zonal wind [U5
u cos(f), solid], and the sum of transient and stationary EMFC

(dashed), averaged between the 850- and 200-mb levels. Data are

taken from National Oceanic and Atmospheric Administration

(NOAA)/NCEP for the years 1990–2010.
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the zonally and vertically averagedU5 u cos(f) (solid)

and sum of transient and stationary eddy momentum

flux convergence (EMFC, dashed; cf. Fig. 1 in Lee 1999).

Eddy parameterization using Rayleigh damping is there-

fore in agreement with the observed poleward momen-

tum flux at midlatitudes but in disagreement with the

observed equatorward momentum fluxes in the deep

tropics and polar regions. From Fig. 3, we find that the

typical value of U/EMFC is on the order of 1000 days,

which is much longer than the typical eddy–mean flow

response time of 1 week at midlatitudes (Lorenz and

Hartmann 2001). This suggests that r represents the

damping rate of the entire tropical circulation, which

this model implies is much longer.

Eddy parameterizations more complex than Rayleigh

damping have been shown to capture some of the basic

features of seasonal climatology (e.g., Schneider 1984,

Sobel and Schneider 2009). In this work we neglect the

momentum fluxes associate with equatorial waves and

consider only the effect of midlatitude momentum

fluxes on the HC. However, since EMFC in the deep

tropics and polar regions is small relative to EMFC at

midlatitudes, and since this work is of a qualitative nature,

we justify the parameterization of EMFC using simple

Rayleigh damping for its mathematical and conceptual

simplicity (e.g., Shell and Held 2004; Polvani and Sobel

2002).

Further discussion of the physical interpretation of the

SWM can be found in Adam and Paldor (2009, 2010a).

3. Inviscid steady states

In this section we briefly describe the known semi-

analytic solutions of the inviscid SWM for the case of

annually averaged (equinoctial) heating (m0 5 0) with

vertical advection of momentum (Adam and Paldor

2009) and without it (HH). We will refer to these known

solutions in the following sections, and in particular to

their predictions of the HC strength and width.

a. AMC solutions

For the case of the inviscid SWM (r 5 0) at steady

state, without vertical advection of momentum (I 5 0),

Eq. (2b) becomes

VM95 0, (3)

so that the SWM has only two steady states: uniform-M

steady state, given by

V5
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, (4a)
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�
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whereM and h0 are constants; and a radiative–convective

equilibrium (V, Q 5 0) steady state, given by

V5 0, (5a)

h5 hf , (5b)

M5 (12m2)
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ahf9

m

s
. (5c)

Since neither radiative–convective equilibrium nor uni-

formM are physically realistic as global steady states, the

circulation divides into a tropical uniform-M region and

an extratropical radiative–convective equilibrium region

(cf. HH; Adam and Paldor 2009, 2010a).

Requiring conservation of mass and continuity of h,

and assuming that the zonal velocity vanishes at the

equator, the latitude separating the two regions and

marking the polar boundary of the HC (mH) is obtained

by the roots of

M
2

11 2RT

"
mH

12m2
H

2
1

2
ln

�
11mH

12mH

�#
2

2

3
m3
H 5 0. (6a)

A small angle approximation then yields

fH ’
ffiffiffiffiffiffiffiffiffiffi
5

3
RT

r
, (6b)

whereRT5 aDh is the thermal Rossby number. These are

the well-known angular momentum–conserving solutions

of HH, in which due to Hide’s theorem, M5 1 (i.e.,

u vanishes at the equator; cf.HH;AdamandPaldor 2009).

SinceQ5 (hf2 h)/t changes sign at the polar boundary

of the heated region (ascending branch), from Eq. (4) we

find that at this latitude, denoted as mA, Vh reaches its

maximum. Using Eq. (4) and the continuity of h, we get

mA 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

M
2

11 2RT

1

(12m2
H)

vuut . (7)

We refer to the value of the mass flux at this latitude as

the HCS, defined as

HCS5Vhjm5m
A

. (8)

While some qualitative differences exist between alter-

native definitions of the HC strength (e.g., Levine and
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Schneider 2011), we find the above-mentioned form

suitable for this study.

b. Inviscid model with VAM

The steady states of the SWM for the case of the in-

viscid (r 5 0) model with vertical advection of momen-

tum follow a three-region paradigmwhere each region is

unique to sign(Q): a radiative–convective equilibrium

(Q 5 0) extratropical region given by Eq. (5), a sub-

tropical uniform-M cooling (Q , 0, descending HC

branch) region given by Eq. (4), and a tropical heating

(Q . 0, ascending HC branch) region characterized by

a uniform height h (i.e., weak temperature gradient),

given by

h5 h5 11Dh

�
1

2
2m2

A

�
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Requiring conservation of mass and continuity of h, mA
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From Eq. (10a), a small angle approximation yields

mH ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT /(11 2RT)

q
. (11)

The dependence of mH and mA on RT for both VAM

(solid) and AMC (dashed) solutions is shown later (see

the left panel of Fig. 8; cf. Fig. 2 in HH; Fig. 9 in Adam

and Paldor 2009).

Note that the vertical advection of momentum solutions

of Adam and Paldor (2009) assume a weak temperature

gradient only at the ascending branch of the HC, and not

throughout the entire HC as was done by Polvani and

Sobel (2002). In addition, the main difference of the ver-

tical advection of momentum solutions from those of

Polvani and Sobel (2002) and HH is that they offer a dy-

namic definition of the tropics, in agreement with the ob-

served zonally averaged atmosphere, that is, the equatorial

ascent region, characterized by a weak temperature gra-

dient and bounded by the latitude of maximal poleward

mass flux.

Since Vh is maximal at mA, and since we also have

h(mA)5 hf (mA), fromEq. (9b) theHC strength is given by

HCS5Vhjm5m
A

5
2

3

Dhm
3
A

t
. (12)

Assuming that like mH, mA scales with
ffiffiffiffiffiffiffi
RT

p
, the HC

strength in the inviscid case approximately scales with

R3/2
T Dh/t5a3/2D5/2

h /t, which is the scaling found by HH

[Eq. (18) in HH]. In the following section (Fig. 7) we

show that the HC strength in the inviscid case scales

nearly linearly with RTDh/t5aD2
h/t.

4. Steady states of the viscous (r . 0) SWM

To study the effect of eddies, as parameterized by

Rayleigh damping r, we begin by examining the steady

states obtained by long time integrations of Eq. (2). Time

integrations were performed using a staggered-grid

(where h is staggered from V and M) leapfrog scheme

with a Robert–Asselin time filter (temporal damping

coefficient 5 0.001), as described in Adam and Paldor

(2009). A spatial resolution of 1000 meridional grid

points, evenly spaced in m, was used in the results shown

below. This translates into a resolution of 0.01, 0.015, and

0.058 of latitude in the tropics, midlatitudes, and polar re-

gions, respectively.

Taking advantage of the simplicity of the SWM, we

performed a numerical parameter sweep (;1000 model

runs) of the steady solutions at long times of the time-

dependent equations of the SWM for a wide range of

parameter values. It is readily shown that if t is scaled by

the thermal relaxation time t, Eq. (2) can be represented

by an effective Rayleigh coefficient of damping rt [cf.

Adam and Paldor (2010b) and Fang and Tung (1997) for

the scaling of t in the inviscid case]. It is therefore the

product of r and t (i.e., ratio of thermal and effective

eddy-damping time scales) that affects solutions at steady

state. This will also become evident in the subsequent

analysis. We therefore performed a parameter sweep for

the parameter ranges: a5 0.15–1.7, Dh 5 2/15–2/3 (RT 5
0.1–0.225), and rt 5 0.001–1. These parameter ranges

represent the physically realistic extremities of the model

JANUARY 2013 ADAM AND HARN IK 289



parameters a and Dh for Earth, and a wider range of

rt values.

Figure 4 presents the steady states for the zonal wind

(Fig. 4a), meridional wind (Fig. 4b), and height (Fig. 4c)

at long times for a5 0.45, Dh 5 1/3 (RT 5 0.15), and rt 5
0 (VAM solutions), 0.005, 0.05, and 0.5 (cf. Figs. 5 and 7

in HH).

Several robust features of the steady states of the

SWMemerge from the wide parameter sweep, which we

also derive analytically in the following section.

The local Rossby number, defined as

Ro52z/f 5 11M9/m (13)

(where z is relative vorticity and f is the Coriolis pa-

rameter), can be perceived as a measure of the degree

to which angular momentum is conserved meridionally

(e.g., Schneider 2006). Since in the inviscid case angular

momentum is conserved in the descending branch

(whereQ, 0), the value of Ro may be used to quantify

the dominance of eddy momentum fluxes there. As

shown in Fig. 5, Ro approximately depends on a single

parameter, which represents the competition between

the differential heating of the sun (which drives the HC

and subtropical jets) and eddy momentum fluxes (which

feed on the energy of the subtropical jets). This ratio,

denoted by Pr, can be thought of as an effective HC

Prandtl number, which relates eddy and thermal driving

of the HC on the rotating sphere, is defined as

Pr 5
rt

aD2
h

5
rt

RTDh

5
V2a2rt

gH0D
2
h

. (14)

Shown as dots are Ro values calculated at mA for the

entire parameter sweep (other representations of Ro,

e.g., the mean of Ro over the entire descending branch

region, yield similar dependence on Pr). A clear sepa-

ration of the steady states into three regimes is observed:

Weak eddy dominance: Ro ; 1, Pr / 0

Intermediate eddy dominance: 0 , Ro , 1, Pr ; 1

Strong eddy dominance: Ro ; 0, Pr � 1

The steady states shown in Fig. 4 for rt 5 0, 0.005,

0.05, and 0.5 correspond to Pr 5 0, 0.02, 0.1, 1, and 10,

respectively.

The dependence of Ro on Pr shown in Fig. 5 predicts

that Ro increases (i.e., eddy dominance decreases) in

response to mean (a) and differential (Dh) heating, as

FIG. 4. (a) Zonal velocity u (m s21), (b)meridional velocity y (m s21), and (c) height (10 km), at steady state fora5 0.45,Dh5 1/3, rt5 0

(VAM solutions), 0.001, 0.005, 0.05, and 0.5. These values correspond toRT5 0.15 andPr5 0, 0.02, 0.1, 1, and 10. The radiative-convective

equilibrium height is shown in gray in (c) for reference.

FIG. 5. The local Rossby number, Ro 5 1 1 M9/m, calculated at

the polar boundary of the ascending branch of the Hadley circu-

lation (mA), plotted against ln(Pr) (Pr 5 rt/DhRT). Shown as dots

are Ro values at steady state of the time-dependent SWMobtained

by long time integrations for the parameter ranges: a 5 0.15–1.7,

Dh 5 2/15–2/3 (RT 5 0.1–0.225), rt 5 0.001–1.
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well as in response to a decreased rotation rate V. We

further elaborate on the agreement of this dependence

with existing theory and observations in the discussion

(section 6).

We find that steady-state variables for r. 0 generally

do not scale withPr, as shown in Fig. 6 for theHC strength,

for example. The different branches seen in Fig. 6

correspond to different values of r, with the HC strength

increasing with r. The HC strength increases with

gH0D
2
h/tV

3a2 within branches, as in the inviscid case.

Accordingly, we find that when theHC strength and width

are scaled by their respective value in the inviscid case

(vertical advection of momentum solutions for r 5 0 and

same a,Dh, and t), a dependence onPr very similar to that

observed for Ro (Fig. 5) emerges.

The scaling of the HC strength in the inviscid case, for

VAM (solid) and AMC (dashed) solutions, is shown in

the left panel of Fig. 7 for the parameter ranges used in

the parameter sweep. The dependence on Pr of the in-

verse of the HC strength, scaled by its respective inverse

inviscid value (hereafter referring to VAM solutions) is

shown in the right panel of Fig. 7. The similarity of the

dependence of the scaled HC strength and Ro on Pr

implies that it is the deviation from inviscid solution that

scales with Pr, and that this deviation from inviscid so-

lutions is closely associated with the level of eddy

dominance.

A similar dependence on Pr is found for mA and mH.

While in the inviscid case, mH denotes the latitude of

both HC width and subtropical jet, this is no longer the

case in the viscous case. If we assume a three-region

structure at steady state (ascending branch, descending

branch, and modified radiative–convective equilibrium

regions), then we expect a transition region from the

descending branch to a modified radiative–convective

equilibrium poleward of the latitude of the subtropical

FIG. 6. Dependence of the nondimensional HCS on ln(Pr) (Pr 5
rt/DhRT). Shown as dots are the values at steady state of the time-

dependent SWM obtained by long time integrations for the pa-

rameter ranges: a5 0.15–1.7, Dh 5 2/15–2/3 (RT 5 0.1–0.225), and

rt 5 0.001–1.

FIG. 7. (left) The smoothed scaling of the nondimensional HCS [HCS5max(Vh)] for VAM solutions (solid) and

AMC (dashed) solutions. Dots represent particular steady states. (right) The dependence of the ratio of HCS in the

inviscid case andHCS for r. 0 (the inverse of theHCS for r. 0, scaled by the respective HCS in the inviscid case) on

ln(Pr) (Pr5 rt/DhRT). Shown as dots are the values at steady state of the time-dependent SWMobtained by long time

integrations for the parameter ranges: a 5 0.15–1.7, Dh 5 2/15–2/3 (RT 5 0.1–0.225), and rt 5 0.001–1.
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jet mSTJ [latitude of max(U)]. We therefore define mH as

the latitude where the second derivative of the mass flux

is maximal, poleward of the latitude of the subtropical

jet: max(Vh)0jm$mSTJ
. This definition is also valid in the

inviscid case, where mH 5 mSTJ. The left panels of Fig. 8

show the dependence of mH (top) and mA (bottom) on

the RT, in the inviscid case for VAM (solid) and AMC

(dashed) solutions. The right panels of Fig. 8 show the

inverse of mH (top) and mA (bottom), scaled by their

respective inverse values in the inviscid case. Steady

states for which mH 5 1, indicating that the assumption

of a three-region structure is not valid, are removed

from the top panel. Similar to the HC strength, the re-

semblance of the dependence on Pr of the scaled inverse

of mH and mA and Ro (Fig. 5) allows for associating the

deviation from the inviscid solution with the level of

eddy dominance. A similar dependence to that of mH is

found for mSTJ (not shown).

Thus, we observe that the deviation from values in the

inviscid case of the HC strength, and the latitudes of the

mH, the mA, and the mSTJ increase with Pr at a rate that

depends on the associated Ro regime. We also find in

FIG. 8. (left) The dependence of (top) mH and (bottom) mA, on RT 5 aDh, for the inviscid (r5 0) VAM and AMC

solutions. Vertical dashed lines indicate the range of RT values of the viscous steady states shown in the right panels.

Differences in theAMCandVAMsolutions formA in the left bottom panel are negligible. (right) The dependence of

the (top) inverse ofmH and (bottom)mA, scaled by the respective inviscid solution (VAM solutions for same a andDh

but r5 0) on ln(Pr) (Pr5 rt/DhRT). Shown as dots are the values at steady state of the time-dependent SWMobtained

by long time integrations for the parameter ranges: a5 0.15–1.7, Dh 5 2/15–2/3 (RT 5 0.1–0.225), and rt 5 0.001–1.

Steady states for which mH 5 1, indicating a three-region separation cannot be assumed, are removed from the top

right panel. Vertical dashed lines in the left panels indicate the range ofRT values of the viscous steady states shown in

the right panels.
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our runs that for Pr . 7.4 (Ro ; 0.1; e.g., Fig. 4, thick

solid line), the viscousHC encompasses the entire globe,

so that an extratropical modified radiative–convective

equilibrium region ceases to exist. Such an extendedHC

is unlikely to occur on Earth but may be relevant for

more slowly rotating planets.

From the left panels of Figs. 7 and 8, it is evident that

in the inviscid case, both the HC width and strength

monotonically increase in response to a and Dh (cf. Hou

1984; Hou and Lindzen 1992). We wish now to examine

whether the addition of eddy damping (r) affects this

monotonic behavior. The right panels of Figs. 7 and 8

suggest that a decrease in the HC strength or width in

response to heating is allowed only at the intermediate

or eddy-dominated Ro regime, and only if r is affected

by the heating [i.e., r 5 r(a, Dh)] such that it decreases

with mean or differential heating. In other words, while

the inviscid response to heating is an increase in the HC

strength, a sufficient decrease in the eddy-driven com-

ponent of the circulation will lead to an overall decrease

in the HC strength. Such a decrease in r can only occur

for high enough Pr (low enough Ro), suggesting that

for high enough Pr values, a nonmonotonic response of

the HC strength to heating is allowed, while for low Pr

values we expect a monotonic increase in theHC strength.

A decrease of r with heating was shown, for example, by

Levine and Schneider (2011, Figs. 4–6), who found

a monotonic increase of Ro in response to heating, but

a nonmonotonic response of the HC strength to heating,

coupled to a nonmonotonic response of the eddy com-

ponent of the HC. In their study, both the HC strength

and eddy component of the HC strength increased with

mean temperature for temperatures below today’s cli-

mate conditions and then decreased as the mean tem-

perature increased (and similarly, eddy kinetic energy,

mean available potential energy, and eddy momentum

flux convergence). Thus, we conclude that a non-

monotonic response of the HC strength to heating is

allowed if the effect of eddies depends on the heating.

We turn now to examine the amplitude of the sub-

tropical jet. The subtropical jet amplitude in the inviscid

case can be obtained from Eq. (5),

USTJ5M2 11m2
H 5 (12m2

H)
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2RT

q
2 1
	
. (15)

As shown on the left panel of Fig. 9, in the inviscid case

the subtropical jet amplitude scales with RT. We find

that for r . 0, USTJ/(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
2 1) monotonically (and

close to linearly) decreases with ln(rta). By analogy to

the thermal Rossby number RT 5 Dha, the parameter

RE [ rta can be thought of as a macroturbulent Rossby

number, in which the ratio of the thermal and effective

eddy-damping time scales replaces differential thermal

driving. Since RT and the inviscid solutions are known,

this implies that RE can be used to predict the value of

USTJ for r . 0.

A similar dependence on RE is found for EPTD. The

left panel of Fig. 10 shows that in the inviscid case,

EPTD/Dh scales withRT. For r. 0, the EPTD, scaled by

its respective inviscid EPTD, monotonically decreases

with RE, also reflecting a decrease in available potential

energy (not shown).

FIG. 9. (left) The dependence ofUSTJ onRT for VAM(solid) andAMC (dashed) solutions. (right) The dependence

of USTJ scaled by (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
2 1), on ln(RE) (RE 5 rta). Shown as dots are the values at steady state of the time-

dependent SWMobtained by long time integrations for the parameter ranges: a5 0.15–1.7,Dh5 2/15–2/3 (RT5 0.1–

0.225), and rt 5 0.001–1. Vertical lines in the left panel indicate the range of RT values of the viscous steady states

shown in the right panel.
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The EMFC distribution shown in Fig. 3 has a clear

north–south asymmetric component. To examine the

effect of asymmetric EMFC, we performed an additional

parameter sweep similar to the one described above, in

which the value of r was allowed to change per hemi-

sphere, such that

r5

�
rNH; m. 0

rSH; m, 0
, (16)

where rNH and rSH are positive constants. To avoid in-

stabilities arising from the sharp transition between rNH

and rSH, r was smoothed in the vicinity of the equator.

The ratio rSH/rNH was varied between 1 and 5. Figure 11

shows the dependence on latitude of the meridional

(y, dashed), vertical [w5 (Vh)9, dotted] and zonal (u, gray)
winds, and h (solid) at steady state for the symmetric

(top panel) and asymmetric case (bottom panel). In both

cases trNH 5 0.006, a 5 0.45, and Dh 5 1/3. The ratio

rSH/rNH was set to 1 and 3 for the symmetric and asym-

metric cases, respectively. The nondimentional vertical

wind is given here as w 5 (Vh)9 (cf. Gill 1980), with a

scaling of VH0. For presentational clarity, winds are

brought to scale by using units of 100, 0.01, and 1026 m s21,

for the zonal, meridional, and vertical winds, respectively.

The ascending branch (w . 0) is shaded as in Fig. 2.

Since only r is allowed to vary between hemispheres,

the ratio rSH/rNH also equals the Pr ratio of the two hemi-

spheres. Accordingly, we find that Ro is smaller in the SH,

the SH HC strength increases partly at the expense of the

NH HC strength, the ITCZ (the latitude where y changes

sign) is shifted toward the NH (38 in Fig. 11b), and the

SH subtropical jet is weakened and shifted poleward.We

found all of these tendencies to monotonically increase

with the rSH/rNH ratio. Hemispheric asymmetry in theHC

strength and location of the ITCZ comparable to the

observed annually averaged atmosphere (Fig. 2) are ob-

tained for rSH/rNH. 3. Such strong asymmetry in EMFC

is not evident in Fig. 3, suggesting that asymmetry in the

annually averaged midlatitude total eddy momentum

fluxes plays a minor role in determining the asymmetric

features of the annually averaged HC.

5. Semianalytic steady solutions for r . 0

The findings of the previous section suggest that steady

solutions for r . 0 possess a strong dependence on the

respective inviscid (r 5 0) solutions. In addition, the de-

viation from inviscid solutions in general is found to be

proportional to the ratio of the thermal and effective

eddy forcing time scales rt and related to the associated

Ro regime.Moreover, from Fig. 5 we find that the ‘‘weak

eddy-dominance limit’’ can be defined as

Pr 5
rt

aD2
h

5
rtV2a2

gH0D
2
h

� 1. (17)

We now proceed to derive the steady solutions for the

case of r . 0 as deviations from the respective inviscid

solutions in the weak eddy-dominance limit. We assume

that in this limit, the solutions are small deviations from the

FIG. 10. (left) The dependence of the EPTDdivided by the EPTD atDh onRT in the inviscid case, for VAM (solid)

and AMC (dashed) solutions. (right) The dependence of the EPTD of the steady states of the SWM scaled by the

respective EPTD in the inviscid case (VAM solutions) on RE 5 rta. Shown as dots are the values at steady state of

the time-dependent SWM obtained by long time integrations for the parameter ranges: a5 0.15–1.7, Dh 5 2/15–2/3

(RT5 0.1–0.225), and rt5 0.001–1.Vertical lines in the left panel indicate the range ofRT values of the viscous steady

states shown in the right panel.
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inviscid three-region vertical advection of momentum so-

lutions given by Eqs. (4), (5), and (9). For clarity, we shall

refer to these regions as the tropical (uniform h, Q . 0,

in the inviscid case), subtropical (uniform M, Q , 0, in

the inviscid case), and extratropical (radiative–convective

equilibrium in the inviscid case) regions. We use ~V , ~M ,

and ~h to denote the steady inviscid vertical advection of

momentum solutions, and V, M, and h to denote steady-

state solutions for r . 0. In addition, unless stated other-

wise, a scaled variable shall refer to a variable scaled by its

respective inviscid value, as in the previous section.

a. Extratropical region

We begin by solving for the functional forms of h, V,

and M in the weak eddy-dominance limit at the extra-

tropical region. We note that for r . 0, a radiative–

convective equilibrium (V 5 0) steady state does not

exist because from Eq. (2b), eddy vorticity fluxes must

be balanced by the mean circulation (M9 5 absolute

vorticity). Thus, the SWM is relaxed to a state that is

not a steady state of the time-dependent equations. We

therefore refer to the extratropical steady state for r. 0

as ‘‘modified radiative–convective equilibrium.’’

Assuming small deviations from inviscid solutions to

leading order, the steady form of Eq. (2) becomes

M5
~M

2
1

(12m2)2

2 ~M

�
12a

h9

m

�
(18a)

V ~M952r( ~M2 11m2) (18b)

h5 hf 2 t(Vhf )9 , (18c)

where from Eq. (5)

~M5 (12m2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

q
. (19)

We therefore find from Eq. (18b) that

V5
r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2RT

p (12m2)

m
. (20a)

Using Eq. (18c) we obtain for h, defined as

h5 hf 1
rt

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 2RT

p �
hf

�
11

1

m2

�
1 2(12m2)Dh

�
.

(20b)

We then use Eqs. (18a), (19), and (20b) to solve for M,

defined as

M5 (12m2)

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

q
1

3

2
rta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
21

11 2RT

3

�
Dh1

21Dh

6m4

�#
. (20c)

From Eq. (20c), we find that in this region, for small

RT, U/(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
2 1) scales with RE 5 rta, as we have

found for the subtropical jet maxima of the steady states

at long times, shown in Fig. 9.

FromEqs. (5) and (9), the EPTD in the inviscid case is

given by Dh(12m2
A). Thus, since in the inviscid case m2

A

scales withRT, EPTD/Dh also scales withRT, as shown in

the left panel of Fig. 10. Assuming that h remains uni-

form at the tropics for r . 0, from Eq. (20b), for small

values of RT, the EPTD for r . 0 is given by

EPTD/Dh 5 (12m2
A)2RE

�
12

1

2
Dh

�
. (21)

We therefore find that the scaled EPTD monotonically

decreases with RE, as shown in the right panel of Fig. 10.

b. Tropical region

We now proceed to approximate the functional form

of M and h in the tropical region, in which h is assumed

FIG. 11. The dependence on latitude of y (dashed), w (dotted),

and u (gray) winds, and h (solid) at steady state for (a) a 5 0.45,

Dh5 1/3, and trSH5 trNH5 0.006; and (b)a5 0.45,Dh5 1/3, trSH5
0.018, and trNH 5 0.006. For presentational clarity, winds are

brought to scale by using units of 100, 0.01, and 1026 m s21, for the

zonal, meridional, and vertical winds, respectively. The ascending

branch (w . 0) is shaded as in Fig. 2. A horizontal zero line

(dashed) is added for reference.

JANUARY 2013 ADAM AND HARN IK 295



constant (weak temperature gradient approximation).

Thus, combining this assumption with steady Eqs. (2b)

and (2c) and integrating, we obtain

M5 12

ð
Qm2 dmð
Qdm

2 rh

ð
(M2 11m2) dmð

Qdm

. (22)

We note that in the inviscid case, Eq. (22) is the equivalent

of Hide’s theorem (cf. HH), that is, M# 1 everywhere

(Adam and Paldor 2010a). Similarly for r . 0, from

Eq. (2b) U must vanish where V 5 0 (cf. Held 2000).

This, however, is an intrinsic property of the eddy pa-

rameterization of the model rather than a general result

applicable to the physical atmosphere (cf. Shell and

Held 2004; Sobel and Schneider 2009).

Exact solutions of Eq. (22) for hf given by Eq. (2d)

involve known but unwieldy hypergeometric functions.

To avoid unnecessary cumbrous and unrevealing alge-

bra, we assume that M ’ ~M in the second term on the

rhs of Eq. (22) and obtain

M ’ 12
m2
Am

2 2
3

5
m4

3m2
A 2m2

2
rth

Dh

2

5
m22

12

5
m2
A 1

2

5m
(3m2

A)
3/2 ln

 ffiffiffi
3

p
mA1mffiffiffi

3
p

m2
A2m

!

3m2
A2m2

, (23a)

so that at the polar boundary of this region

M(m) ’ 12
1

5
m2
A2

rth

eDh

(23b)

[with e5 exp(1)]. The functional form ofV in this region is

found fromEq. (9) by assuming h5 h as in the inviscid case.

c. Subtropical region

From Eqs. (23b) and (5), we find that in the inviscid

case, the difference in M along the subtropical region,

DM5M(mA)2M(mH), is given by

D ~M5 12
1

5
m2
A 2 (12m2

H)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

q
, (24a)

and from Eqs. (23b) and (20c), we find for r . 0,

DM5 12
1

5
m2
A 2

rth

eDh

2 (12m2
H)

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

q
1

3

2
rta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
2 1

11 2RT

3

 
Dh 1

21Dh

6m4
H

!#
. (24b)

Since both m2
A and m2

H scale withRT, D ~M also scales with

RT, as shown in the left panel of Fig. 12. By subtracting

Eq. (24a) from Eq. (24b), the difference between in-

viscid and viscous DM is given by

D ~M2DM5
rt

Dh

"
h

e
1 (12m2

H)
3

2
RT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2RT

p
2 1

11 2RT

3

 
Dh 1

21Dh

6m4
H

!#
. (24c)

Therefore, for smallRT, we expect the relative change in

DMwith respect to the inviscid case, (D ~M2DM)/D ~M, to

scale with Pr5 rt/RTDh. The right panel of Fig. 12 shows

the log–log dependence of the scaled DM on Pr. Unlike

the HC strength and region boundaries that possess

a dependence on the associated Ro regime, the scaled

DM exhibits a power-law dependence, DM/D ~M;
ffiffiffiffiffi
Pr

p
.

While for r . 0 M is continuous everywhere, in the in-

viscid case M is discontinuous at mH (the latitude sepa-

rating the subtropical angular momentumx–conserving

region and extratropical radiative convective equilib-

rium). Therefore, even in the weak eddy-dominance

limit, in the vicinity of mH deviations from the inviscid

solutions of M cannot be regarded as small compared

with the inviscid solutions. We therefore make the fol-

lowing heuristic assumption of the functional form of

M at the subtropical region:

M5M2DM[M11M2e
2(1/P

r
)(m2

H2m2)/(12m2)] , (25a)

whereM5M(mA) [given by Eq. (23b)], andM1 andM2

are constants set to satisfy the boundary conditions

M(mA)5M and M(mH)5M2DM, defined as

M1 52
1

e(1/Pr
)(m2

H
2m2

A
)/(12m2

A
) 2 1

;

M25
1

12 e2(1/P
r
)(m2

H
2m2

A
)/(12m2

A
)
. (25b)

This functional form of M was chosen because it pos-

sesses the following properties: (i) it allows a smooth

transition from continuous viscous solutions of M to

discontinuous inviscid solutions; (ii) in the weak eddy-

dominance limit, Pr � 1, M given by Eq. (25) behaves
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like a small deviation from the value ofM in the inviscid

case everywhere except near mH; and (iii) it has a finite

known integral, allowing us to integrate Eq. (2a) and

obtain an expression for h.

We now use Eq. (25) to integrate Eq. (2a) and find to

leading order,

h ’ h01
1

2a

"
m22

M
2
2 2M1MDM

12m2

1 2MDMPr

M2e
2(1/P

r
)(m2

H2m2)/(12m2)

12m2
H

#
, (26)

where h0 is a constant of integration. Finally, V is found

from

V5

ð
(hf 2 h) dm

h
. (27)

We have now obtained expressions forM, V, and h at

the tropics, subtropics, and the extratropics. These ex-

pressions depend on the constants mH ,mA, h0, h, and M.

To solve for mH ,mA, h0,h, and M, we impose the conti-

nuity of M, V, and h at the regions’ boundaries and con-

servation of mass, yielding a set of five equations, which

we solve semianalytically. Explicit derivation of the so-

lutions of the five equations is found in the appendix.

Figure 13 shows the functional forms of y (left) and u

(right) for steady states at long time integrations of Eq.

(2) (thick solid), the weak eddy-dominance semianalytic

solutions (thick dashed), vertical advection of momen-

tum (thin solid), and angular momentum–conserving

(thin dotted) solutions for Pr 5 0.133, which we find

relevant for present climate conditions. Dashed vertical

lines mark the region boundaries. We find that the weak

eddy-dominance solutions for u deviate from the solu-

tions at long times in the vicinity of the subtropical jet

maxima, but they approximate u well elsewhere. The

weak eddy-dominance solutions also overestimate

the meridional wind, reflecting an underestimation of

the height at the tropics.

Figure 14 shows the convergence of the weak eddy-

dominance solutions (dashed) to the steady solutions at

long times (solid). Weak eddy-dominance solutions,

derived from the roots of Eqs. (A7) and (A8) in the

appendix, for RT 5 0.113, Dh 5 1/3 (as in Fig. 13), and

Pr , 1 are shown for mA and mSTJ (top left), subtropical

jet amplitude (top right), circulation strength (bottom

left), and EPTD (bottom right).

A note on how the semianalytic solutions of the weak

eddy-dominance solutions are obtained is in order. The

weak eddy-dominance solutions involve nonlinear and

transcendental terms whose roots may not be unique.

We find that the roots obtained for Pr # 1 shown in Fig.

14 are unique in the sense that they provide the only

FIG. 12. (left) The dependence of the change in angular momentum along the subtropical region [DM5M(mA)2
M(mH)], on RT in the inviscid case (VAM solutions). (right) The log–log dependence of DM, scaled by its respective

value in the inviscid case on Pr 5 rt/DhRT. Shown as dots are the values at steady state of the time-dependent SWM

obtained by long time integrations for the parameter ranges: a5 0.15–1.7, Dh 5 2/15–2/3 (RT 5 0.1–0.225), and rt 5
0.001–1. As in Fig. 7, steady states for which mH 5 1, indicating a three-region separation cannot be assumed, are

removed from the plot. Vertical lines in the left panel indicate the range of RT values of the viscous steady states

shown in the right panel.
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solutions with smooth dependence on Pr. We do not

present solutions for Pr . 1, as the assumption that the

solutions are small deviations from the inviscid three-

region structure may not be valid in this case.

6. Summary and discussion

Our aim was to gain qualitative understanding of the

interaction of midlatitude eddies with the mean Hadley

circulation (HC). In particular, we examined the re-

sponse of the HC strength and width, the latitude

(mSTJ) and amplitude (USTJ) of the subtropical jets, the

boundary of the ascending branch of the HC (mA), the

equator-to-pole temperature difference (EPTD), and

the local Rossby number (Ro) to variations in heating

and eddy strength.

For this purpose we employed a shallow-water model

(SWM) on the rotating Earth to model the upper branch

of the HC, forced by annually averaged heating, in

which eddies are parameterized as Rayleigh damping r.

The rationale for this form of eddy parameterization is

twofold: (i) as shown in Fig. 3, eddy momentum flux

convergence is approximately proportional to the ob-

served zonally and annually averaged zonal wind at

midlatitudes; and (ii) Rayleigh damping provides a sim-

ple representation of eddies, allowing analytic insight of

the qualitative effect of midlatitude eddies on the HC.

The simplistic shallow-water model and eddy param-

eterization do not account for extratropical eddy-driven

jets, which decouple from the subtropical jets in a

nontrivial manner (e.g., Son and Lee 2005). In addition,

the physical interpretation of r is not clear, in particular

since the typical damping time of r (;103 days) cannot

be directly related to typical eddy–mean flow response

times, which are on the order of a week. This work

therefore relates to themacroturbulentHC, with limited

relevance to midlatitude dynamics or the general cir-

culation of the atmosphere.

The ascent region and midlatitude eddy response to

heating is known to vary between dry and moist models.

However, since the only simplifying assumption used

here is that eddy damping is proportional to the mean

zonal wind, we expect the robust conclusions of this

work to equally apply to moist and dry models.

We performed a wide parameter sweep of the steady

states of the time-dependent equations [Eqs. (2)] at long

times for physically realistic values of the model pa-

rameters: a, a planetary Burger’s number; Dh, the scaled

equator-to-pole temperature difference at radiative–

convective equilibrium; and rt, the product of the Ray-

leigh coefficient of damping and thermal relaxation time.

We find that, for the range of model parameter we

examined, an effective HC Prandtl number, which we

define as Pr 5V2a2rt/gH0D
2
h 5 rt/aD2

h 5 rt/RTDh, non-

linearly predicts the degree of relative dominance of

eddy momentum and heat fluxes over the mean HC,

exhibiting distinct regimes of weak (Ro ; 1), inter-

mediate (0 , Ro , 1), and strong (Ro ; 0) eddy dom-

inance (Fig. 5). We estimate Pr ; 0.13 for Earth’s

present climate.

FIG. 13. The dependence on latitude of the steady solutions of (a) u and (b) y for AMC solutions (thin dotted),

VAM solutions (thin solid), weak eddy-dominance solutions (thick dashed), and long time integrations of Eq. (2)

(thick solid). For presentational clarity, latitudes are truncated at 458. Vertical dashed lines mark the borders of the

subtropical region. Results are shown for a thermal Rossby number,RT5 0.113,Dh5 1/3, and rt5 0.005 (Pr5 0.133).
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We also find that Pr approximately predicts the rela-

tive deviation from inviscid solutions for the boundary

of the ascending branch (Fig. 8), HC strength (Fig. 7),

width (Fig. 8), and change in angular momentum along

the subtropics (Fig. 11). Similarly, the relative change of

the subtropical jet strength and equator-to-pole tem-

perature difference from their respective inviscid solu-

tions are found to scale with RE 5 rta (Figs. 9 and 10,

respectively), which we term here as a macroturbulent

Rossby number, analogous to the thermal Rossby

number RT 5 Dha.

Turning to Fig. 5, we find that Pr predicts a weakening

of the relative dominance of eddies (i.e., increased Ro)

in response to increased mean temperature (H0, a), in

accordance with the response found in more complex

models (e.g., Levine and Schneider 2011). Similarly,

since the equator-to-pole temperature difference at

radiative–convective equilibrium is smaller in the sum-

mer hemisphere, Pr predicts that eddies are more

dominant in the summer hemisphere than in the winter

hemisphere, in accordance with more complex models as

well as the observed atmosphere (e.g., Walker and

Schneider 2006; Schneider andBordoni 2008). FromFigs.

7 and 8 we see that inviscid theory predicts a monotonic

increase in HC strength and width in response to mean

(a) or differential (Dh) heating. From Fig. 7, we deduce

that a decrease in the HC strength in response to heating

can occur only at intermediate or strong eddy dominance,

FIG. 14. The dependence on Pr 5 rt/DhRT of the steady states at long times (full solutions, solid) and weak eddy-

dominance semianalytic (WED, dashed) solutions obtained from the roots of Eqs. (A7) and (A8) forRT5 0.113 and

Dh 5 1/3, as in Fig. 13. Results are shown for (top left) mSTJ and mA, (top right) uSTJ, (bottom left) HCS 5 max(Vh),

and (bottom right) EPTD.
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and only if the eddy component of the HC decreases in

response to the heating. These conditions are consistent

with the nonmonotonic HC strength response to heating

found by Levine and Schneider (2011).

To test the effect of equatorially asymmetric eddy

damping (as opposed to equatorially asymmetric heat-

ing), we performed an additional parameter sweep in

which a different value of r was used for each hemi-

sphere. For Southern Hemisphere r (rSH) greater than r

at the Northern Hemisphere (rNH), we found that (i) the

SH HC strength increased partly at the expense of the

NH HC strength; (ii) the ITCZ (the latitude where y

changes sign) was shifted to the north; and (iii) the SH

subtropical jet was damped and shifted poleward. These

tendencies increased monotonically with increasing

rSH/rNH ratios. Hadley circulation strength and ITCZ

shift comparable to those observed in the atmosphere

(Fig. 2) were obtained for rSH/rNH . 3. Such strong

asymmetry, however, is not observed in the annually

averaged EMFC (Fig. 3), suggesting that this simplified

asymmetry plays a minor role in determining the

asymmetric properties of the annually averaged HC.

From Figs. 7–10 we learn that the relative deviation of

the steady states of the viscousHC is strongly dependent

on the values of Pr and RE, as well as on the associated

Ro regime. We thus define the ‘‘weak eddy-dominance

limit’’ as Pr � 1.

In the inviscid case, inviscid solutions follow a three-

region paradigm: weak temperature gradient at the

ascending branch of the HC, angular momentum conser-

vation at the descending branch, and radiative–convective

equilibrium at the extratropics. We derived semianalytic

solutions of the SWMin theweak eddy-dominance limit by

assuming that for sufficiently low values of Pr, the three-

region paradigm, which dominates the inviscid solutions,

can be applied to the eddy-permitting HC. Solutions are

derived as small deviations from the known three-region

inviscid steady states. Themodified three regions are: weak

temperature gradient at the ascending branch, a smooth

monotonically decreasing angular momentum at subtropics

[Eq. (25)], and modified radiative–convective equilibrium

at the extratropics.

Approximate expressions for the modified steady states

in the weak eddy-dominance limit are derived and solved

semianalytically in section 5. These expressions yield the

scaling relations found in the parameter sweep of the

model for the steady-state HC strength (Fig. 7) and width

(Fig. 8), the boundary of the ascending branch (Fig. 8),

subtropical jet strength (Fig. 9), equator-to-pole tem-

perature difference (Fig. 10), and the change in angular

momentum along the subtropics (Fig. 12). The weak

eddy-dominance solutions diverge from the time-

dependent solutions at long times as Pr increases and

may be invalid for Pr . 1.

The weak eddy-dominance solutions can be extended

to other forms of eddy parameterization, potentially

more realistic than Rayleigh damping, which may better

capture seasonal climatology. A simple parameteriza-

tion of the gross response of eddies to variations of ex-

ternal parameters, for example, r(a, Dh), may further

elucidate the nonlinear interaction of midlatitude eddies

and the mean HC.

Our findings suggest that in the intermediate regime

of eddy dominance, the properties of the HC are de-

termined by a base three-region inviscid state, given by

RT and Dh, and a deviation from that state, predicted

by Pr. The steady states of the idealized model are found

to be in agreement with more complex models as well

as the observed atmosphere. Thus, the idealized macro-

turbulent HC SWM provides powerful insight into the

interaction of the HC and midlatitude eddies. Given the

simplicity and qualitative agreement of the model with

more complex models as well as the observed atmo-

sphere, the weak eddy-dominance solutions may there-

fore be regarded as a meaningful step toward a theory

of the macroturbulent HC in the intermediate eddy-

dominance regime.
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APPENDIX

Semianalytic Solutions of the SWM

Neglecting terms proportional to V and substituting

Eq. (24) into steady Eq. (2), we find

h9’ m

a

"
12

M
2
1M2

1DM
22 2MM1DM2 2M2DM(M2M1DM)e2(1/P

r
)(m2

H2m2)/(12m2)1DM2M2
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2(2/P
r
)(m2
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(12m2)2
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so that to leading order, in the midregion

h ’ h01
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2
2 2M1MDM

12m2
1 2MDMPr

M2e
2(1/P
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)(m2

H2m2)/(12m2)

12m2
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Now that the functional forms ofM,V, and h are known in the three regions, we proceed to write the equations for

mA,mH, h,M, and h0 for r. 0 by imposing the continuity of h andM and the conservation ofmass.Mass conservation

yieldsðm
A

0
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Imposing continuity at mA, we obtain
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and from continuity at mH we obtain
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By setting h from continuity at mA [Eq. (A4)], h0 from

continuity atmH [Eq. (A6)], using Eqs. (23b) and (24) for

M andDM, respectively, and neglecting the contribution

of the exponential terms to the integral in Eq. (A3),

Eqs. (A3)–(A6) are reduced to
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It is readily verified that by setting r 5 0, the corre-

sponding inviscid equations for mA and mH [Eq. (12)] are

reproduced. The region boundaries mA and mH are found

as the roots of Eqs. (A7) and (A8), thus setting the values

of M [Eq. (23)], h [Eq. (A4)], and h0 [Eq. (A2)].
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