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Relation of the double-ITCZ bias to the atmospheric energy

budget in climate models

Ori Adam1, Tapio Schneider1,2, Florent Brient1, and Tobias Bischoff2

Key Points.
◦ CMIP5 precipitation biases have significant hemi-
spherically symmetric and antisymmetric components

◦ Hemispherically antisymmetric biases are related to
the cross-equatorial atmospheric energy flux

◦ Hemispherically symmetric biases are related to the
atmospheric net energy input near the equator

We examine how tropical zonal-mean precipitation biases
in current climate models relate to the atmospheric energy
budget. Both hemispherically symmetric and antisymmet-
ric tropical precipitation biases contribute to the well known
double-intertropical convergence zone (ITCZ) bias; however,
they have distinct signatures in the energy budget. Hemi-
spherically symmetric biases in tropical precipitation are
proportional to biases in the equatorial net energy input;
hemispherically antisymmetric biases are proportional to the
atmospheric energy transport across the equator. Both re-
lations can be understood within the framework of recently
developed theories. Atmospheric net energy input biases in
the deep tropics shape both the symmetric and antisymmet-
ric components of the double-ITCZ bias. Potential causes
of these energetic biases and their variation across climate
models are discussed.

1. Introduction

Most current coupled general circulation models overes-
timate precipitation over oceans in the southern tropics and
underestimate it in the equatorial Pacific (Fig. 1a) [e.g,
Lin, 2007; Li and Xie, 2014]. This problem is called the
double-intertropical convergence zone (ITCZ) bias because
the ITCZ in the models splits into two rain bands more
often than is observed. The double-ITCZ bias dates back
to the earliest climate models [Mechoso et al., 1995] and,
despite substantial advances in climate modeling, persists
in the current climate models that participated in phase 5
of the Climate Model Intercomparison Project (CMIP5) [Li
and Xie, 2014; Zhang et al., 2015; Tian, 2015].

Because the ITCZ can change in response to distant per-
turbations in the energy budget, for example, in high lati-
tudes [e.g., Vellinga and Wood , 2002; Chiang and Bitz , 2005;
Broccoli et al., 2006; Kang et al., 2008; Chiang and Fried-
man, 2012; Schneider et al., 2014], the causes of the double-
ITCZ bias may lie in distant biases in the atmospheric en-
ergy budget. For example, biases in the representation of
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extratropical clouds over the Southern Ocean have been sug-
gested to cause the double-ITCZ bias [Hwang and Frierson,
2013]. But climate models also exhibit biases in the tropical
atmospheric energy budget, which can likewise affect the
double-ITCZ bias. For example, CMIP5 models produce
overly bright low-level clouds in the tropics, and they mis-
represent the distribution of these clouds [e.g., Nam et al.,
2012]. Such biases in the radiative energy budget can af-
fect the tropical precipitation distribution [e.g., Philander
et al., 1996; Li and Xie, 2012]. Or biases in ocean dynam-
ics, such as unresolved ocean eddy fluxes [e.g., Abernathey
and Wortham, 2015] and unrealistic coastal upwelling [e.g.,
Delworth et al., 2012; Small et al., 2014], can lead to bi-
ases in ocean energy uptake. Such biases in ocean energy
uptake can likewise affect the tropical precipitation distri-
bution and may lead to a double-ITCZ bias [Bischoff and
Schneider , 2014; Schneider et al., 2014; Bischoff and Schnei-
der , 2016]. The persistence of the double-ITCZ bias across
generations of climate models has its roots in our inability
so far to link the ITCZ bias mechanistically to biases in the
representation of atmospheric and oceanic processes. This
paper identifies potential causes of the double-ITCZ bias by
examining its relation to energetic biases both in the tropics
and in the extratropics.

Broccoli et al. [2006], Kang et al. [2008], and Donohoe
et al. [2013], among others, have shown that the ITCZ shifts
southward as the northward atmospheric energy transport
(AET) across the equator strengthens, and conversely as it
weakens. In the present climate, the mean position of the
marine ITCZ at 6◦N (Fig. 1a) is associated with a south-
ward energy flux across the equator of about 0.2 PW (1
PW = 1015 W)—a result of the northern hemisphere (NH)
being warmer than the southern hemisphere (SH) because
of northward ocean energy transport in the Atlantic [e.g.,
Marshall et al., 2013].

The double-ITCZ bias in climate models implies an over-
all southward shift of the precipitation distribution, whose
magnitude in models has been shown to be correlated with
biases in the cross-equatorial AET [Hwang and Frierson,
2013]. This overall southward shift is a hemispherically
asymmetric bias in the tropical precipitation distribution.
Recent theoretical advances linking the ITCZ position to
the atmospheric energy budget suggest that hemispheri-
cally symmetric biases in the tropical precipitation distri-
bution—e.g., a double ITCZ straddling the equator sym-
metrically instead of a single ITCZ on the equator —may
arise through biases in the net energy input (NEI) to
the atmosphere near the equator [Bischoff and Schneider ,
2014, 2016]. Therefore, it can be fruitful to analyze the
hemispherically symmetric and antisymmetric components
of the tropical precipitation distribution separately and re-
late biases in them to the atmospheric energy budget. This
is the approach we pursue in the present paper.

We analyze the annual- and zonal-mean precipitation dis-
tribution and atmospheric energy budget of CMIP5 histor-
ical simulations (with coupled models driven by prescribed
atmospheric compositions) and compare them with obser-
vations. The data and methods underlying our analysis are
presented in section 2. The hemispherically symmetric and
antisymmetric components of biases and intermodel varia-
tions are examined in section 3. The processes that may be
responsible for the biases are discussed in section 4.
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Figure 1. (a) Climatological (1979-2004) annual- and
zonal-mean precipitation according to the GPCP dataset
(black) and CMIP5 models (colors). (b) Meridional de-
pendence of the (Pearson) correlation coefficient between
the tropical precipitation asymmetry index AP and the
annual- and zonal-mean precipitation in CMIP5 models.
Shading indicates 95% confidence bounds calculated us-
ing t statistics. (c) As in (b), but showing the correlation
with the equatorial precipitation index EP .

2. Methods and data

2.1. Theory

The zonally-averaged and column-integrated meridional

energy transport in the atmosphere vanishes near the ITCZ,

so the ITCZ can be roughly associated with the atmospheric

“energy flux equator” [e.g., Kang et al., 2008; Donohoe et al.,

2013; Adam et al., 2016]. Approximate expressions for the

energy flux equator (EFE) can be obtained as zeros of the

zonally averaged and column-integrated meridional energy

flux in the atmosphere, Taylor expanded in latitude near

the equator (see the Supporting Information). To first or-

der, the location of the EFE (roughly the ITCZ position)

can be approximated by [Bischoff and Schneider , 2014]

φEFE = −
1

a

AET0

NEI0
, (1)

where φ denotes latitude, a is Earth’s radius, and AET0 and
NEI0 denote the atmospheric energy transport and equato-
rial net energy input at the equator.

According to Eq. (1), changes in AET0 at fixed NEI0 lead
to meridional shifts of the ITCZ, which are generally asym-
metric about the equator. To the extent precipitation vari-
ations associated with ITCZ shifts follow the ITCZ position
(e.g., if the precipitation distribution around the ITCZ re-
mains invariant during the ITCZ shifts), precipitation vari-
ations associated with variations in AET0 therefore gener-
ally have a hemispherically antisymmetric component. Con-
versely, changes in NEI0 at fixed AET0 lead to shifts of the
ITCZ toward or away from the equator. If the mean ITCZ
position is off the equator, variations in NEI0 can then again
lead to asymmetric precipitation variations. However, if the
ITCZ symmetrically shifts between positions on either side
of the equator in different regions or seasons, NEI0 variations
lead to hemispherically symmetric modulations of the ITCZ
in the annual or zonal mean. Similarly, hemispherically sym-
metric precipitation variations in double-ITCZ states that
symmetrically straddle the equator and are associated with
negative NEI0 are related to NEI0 variations [Bischoff and
Schneider , 2016].

2.2. Indices

To quantify the hemispherically antisymmetric compo-
nent of the tropical precipitation distribution, we use the
tropical precipitation asymmetry index AP [Hwang and
Frierson, 2013]

AP = (P̄0−20◦N − P̄20◦S−0)/P̄20◦S−20◦N, (2)

where P̄ denotes the zonal-mean precipitation and (·)φ1−φ2

denotes an area-weighted mean between latitudes φ1 and
φ2. To quantify the hemispherically symmetric component
of the tropical precipitation distribution, we use the equa-
torial precipitation index EP,

EP =
P̄2◦S−2◦N

P̄20◦S−20◦N

− 1. (3)

In double-ITCZ states that straddle the equator and in
which the equatorial precipitation vanishes, EP assumes its
lower bound EP = −1. If tropical precipitation has a uni-
form distribution, EP = 0. The more strongly peaked trop-
ical precipitation is on the equator, the larger EP . The
absolute values of AP and EP are sensitive to the choice
of normalization (P̄20◦S−20◦N), but their relative variations
across models are not (see Supporting Information). The
corresponding annual-mean values of AP and EP for the
CMIP5 models are given in Table S1, in which models are
ordered according to decreasing AP . It is evident that mod-
els produce a wide variety of precipitation indices AP and
EP .

2.3. Data

We use monthly data from historical simulations of 31
CMIP5 models (Table S1). Only the first realization of
ensembles for each model is used. Simulated and ob-
servational data were interpolated to a 1◦ × 1◦ horizon-
tal grid, and their monthly climatologies were calculated
for the years 1979-2004. Data retrieval and analysis were
performed using GOAT (Geophysical Observation Analysis
Tool, http://www.goat-geo.org).
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Figure 2. (a) Relation of the annual-mean tropical pre-
cipitation asymmetry index AP and cross-equatorial at-
mospheric energy transport AET0. (b) Relation of the
annual-mean equatorial precipitation index EP and the
equatorial atmospheric net energy input NEI0. CMIP5
models are numbered from largest to smallest AP (Ta-
ble S1). Ensemble means are shown as open circles,
and the observed values (ERAI for energetic quanti-
ties and GPCP for precipitation) are shown as bars,
whose length corresponds to one standard deviation of
interannual variations (AP = 0.185 ± 0.071, AET0 =
−0.15 ± 0.06 PW, and EP = 0.161 ± 0.054, NEI0 =
26.2 ± 1.9 Wm−2).

As precipitation data we use the Global Precipitation Cli-
matology Project (GPCP) data [Adler et al., 2003]. We
obtained similar results with precipitation data from the
Climate Prediction Center (CPC) merged analysis precip-
itation (CMAP) product [Xie and Arkin, 1996], and from
the European Center for Medium-Range Weather Forecasts
(ECMWF) Interim Reanalysis [Dee et al., 2011] (hereafter
referred to as ERAI).

To calculate the atmospheric energy budget, we use
monthly column-integrated ERAI energy fluxes, includ-
ing a barotropic mass flux correction [Trenberth, 1997;
Trenberth and Fasullo, 2012], derived from 4-times
daily data at native reanalysis model resolution (see
www.cgd.ucar.edu/cas/catalog/newbudgets/ for details).
Because the ERAI radiative budgets are affected by system-
atic errors [Trenberth et al., 2001], we use the climatological
mean (2001-2014) of radiative fluxes from the Clouds and
the Earth’s Radiant Energy System (CERES) Energy Bal-
anced and Filled (EBAF) data [Wielicki et al., 1996; Loeb
et al., 2009]. However, because the period of the ERAI
climatology (1979-2004) is dominated by strong El Niño

events, whereas the period of the available CERES climatol-
ogy (2001-2014) is dominated by strong La Niña events, the
surface and top-of-atmosphere (TOA) energy fluxes derived
from these datasets may include offsets (∼2 W m−2) rela-
tive to the CMIP5 ensemble mean, in which the simulated
natural El Niño/Southern Oscillation variability is closer to
being averaged out.

We calculate annual-mean ERAI NEI from the divergence
of the atmospheric energy transport (i.e., we assume en-
ergy storage vanishes in the annual mean). These fluxes
were found to be more consistent with NEI calculated using
CERES data (with a bias ∼2 W m−2 [Adam et al., 2016])
than NEI calculated as a residual of uncertain terms in the
energy budgets of the ERAI reanalysis [Trenberth et al.,
2001]. We calculate CMIP5 NEI directly from the TOA net
shortwave and longwave radiative energy fluxes and from
the net shortwave and longwave radiative energy and sen-
sible and latent heat fluxes at the surface. Because of the
large equatorial gradients of ocean energy uptake, particu-
larly in the eastern Pacific, NEI0 values are sensitive to the
meridional boundaries of averaging. To obtain the equato-
rial NEI0 and AET0 from ERAI, we average NEI and AET
between 5◦S–5◦N; NEI0 from the climate models is obtained
in the same way. (The precise choice of averaging region does
not affect our results qualitatively; see Supporting Infor-
mation.) Because atmospheric energy fluxes with sufficient
temporal resolution to include eddy fluxes are not available
for all climate models, we calculate CMIP5 AET0 values as
half the difference between the SH and NH integrated at-
mospheric NEI. The estimated uncertainty in ERAI AET0

is ∼0.2 PW [Fasullo and Trenberth, 2008].

3. Results

The meridional distribution of the annual- and zonal-
mean tropical precipitation varies substantially across
CMIP5 models and has significant hemispherically symmet-
ric and antisymmetric biases (Fig. 1a) [Lin, 2007; Li and
Xie, 2014]. The observed annual-mean AP is 0.185, consis-
tent with excess precipitation in the NH in the present cli-
mate (Fig. 1a); the mltimodel ensemble-mean AP = 0.04 is
smaller than the observed AP , because of the excessive pre-
cipitation in the southern tropics in the simulations. The
observed annual-mean EP is 0.161, the net result of pos-
itive contributions over the maritime continent and Indian
ocean (where precipitation peaks near the equator), and neg-
ative contributions from the weak precipitation in the east-
ern Pacific and Atlantic cold tongues. The ensemble-mean
EP = 0.038 is also smaller than the observed EP , indicating
a less equatorially peaked precipitation distribution in the
simulations than is observed.

The correlation coefficient of precipitation variations
across models with the indices AP and EP is shown as a
function of latitude in Figs. 1b and c. The index AP

clearly captures hemispherically antisymmetric intermodel
variations in the deep tropics (equatorward of ∼15◦); EP

captures hemispherically symmetric intermodel variations
within ∼30◦ latitude; however, it also correlates with some
hemispherically antisymmetric variations, such as a SH pre-
cipitation peak that is farther poleward than the NH peak—
an antisymmetric variation that is often associated with
symmetrically reduced precipitation around the equator [Li
and Xie, 2014]. Hence, the two indices indeed characterize
different components of annual- and zonal-mean precipita-
tion variations in the vicinity of the ITCZ.

Consistent with the theoretical expectations from Eq.
(1), AP is strongly negatively correlated (R = −0.85) with
cross-equatorial atmospheric energy transport AET0 (Fig.
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2a), as was already shown by Hwang and Frierson [2013].
The correlation between AP and equatorial net energy in-
put NEI0 is insignificant (not shown) because the fractional
intermodel variations in NEI0 (Fig. 2b) are much smaller
than the fractional intermodel variations in AET0 (Fig. 2a).
This, however, is not the case for temporal variations. For
example, interannual variations in NEI0 are generally not
negligible compared with interannual variations in AET0 in
their impact on ITCZ shifts [Adam et al., 2016].

Likewise consistent with the theoretical expectations, a
weaker yet clear relation (R = 0.66) exists between EP and
NEI0 (Fig. 2b). By contrast, the correlation between EP

and AET0 is insignificant. (Because the uncertainty in the
observations is poorly known, we use one standard deviation
of observed interannual variations to indicate the variations
of observed quantities, for comparison with those in sim-
ulations.) The positive correlation of EP and NEI0 (Fig.
2b) is consistent with hemispherically symmetric precipita-
tion variations (Fig. 1c). Increased NEI0 is associated with
equatorward shifts of precipitation and hence increased pre-
cipitation at the equator; decreased NEI0 is associated with
poleward shifts of the ITCZ where and when it is displaced
off the equator. It is also associated with more frequent
double-ITCZ states.

The correlations between AP and EP and those between
AET0 and NEI0 are insignificant, suggesting that the pro-
cesses controlling the hemispherically symmetric and anti-
symmetric variations are not strongly related. To identify
processes that may give rise to biases in AET0 and NEI0 in
the models, we examine the meridional distribution of model
biases in NEI. (AET0 is proportional to the difference in NEI
integrated over the two hemispheres, so biases in it can be
inferred from NEI biases.) Figure 3 shows the area-weighted
zonal-mean biases in NEI (Fig. 3a), decomposed into biases
due to TOA cloud radiative effects (CRE, the difference be-
tween total and clear-sky radiative fluxes; Fig. 3b) and due
to surface energy fluxes (Fig. 3c). (Because shortwave and
longwave CRE nearly balance at the ITCZ, we use total
CRE in Fig. 3b to minimize the effect of CRE biases that
are induced by biases in the ITCZ position.) Differences in
CREs among models dominate the intermodel spread of the
tropical NEI bias [Fig. 3b; Li and Xie, 2012]. Increased
shortwave reflection by low-level tropical clouds (i.e., a neg-
ative TOA CRE bias; Fig. 3b) is approximately balanced
by surface energy flux biases [Fig. 3c; Li and Xie, 2012].
The residual NEI biases near the equator are associated pri-
marily with too cold, too narrow, and too elongated eastern
Pacific cold tongues [e.g., Li and Xie, 2014], which result in
surface energy flux biases that reduce NEI near the equator
and increased it off the equator [Fig. 3a; Li and Xie, 2012].
The biases have an equatorially symmetric component, but
they are not exactly symmetric. The negative bias peaks
north of the equator, while the off-equatorial warm bias is
larger in the SH [Li and Xie, 2014].

The negative biases in the NH tropics and subtropics arise
from Atlantic meridional overturning circulations (AMOC)
that are, on average, too weak in CMIP5 models [Wang
et al., 2014]. The negative surface energy input bias in the
SH tropics is strongest in the Indian ocean; it is likely re-
lated to biases in ocean-atmosphere coupling there [e.g., Li
et al., 2015]. A weak positive bias exists in the SH extrat-
ropics due to insufficient reflection by low-level clouds over
the southern ocean [Hwang and Frierson, 2013; Kay et al.,
2016]. Misrepresentation of Antarctic [e.g., Previdi et al.,
2015] and Arctic [e.g., Stroeve et al., 2012] sea-ice extent
may also produce significant clear-sky shortwave reflection
biases. However, such biases are not clearly evident in the
TOA energy flux bias derived from the CERES dataset (Fig.
3b, black line).

To identify processes that contribute to hemispherically
antisymmetric intermodel variations in precipitation, we ex-
amine the correlation coefficient between intermodel varia-
tions in AET0 and NEI as a function of latitude (Fig. 4).

Figure 3. Meridional dependence of the annual- and
zonal-mean CMIP5 model bias (i.e., the difference be-
tween modeled and observed values) in (a) atmospheric
net energy input NEI, (b) net top-of-atmosphere (TOA)
radiative input (black) and cloud radiative effect (CRE,
red), and (c) surface energy input into the atmosphere.
All fluxes are area weighted (i.e., multiplied by the co-
sine of latitude). The shading indicates one intermodel
standard deviation. Observed values are derived from
ERAI for NEI, from CERES for TOA radiative fluxes,
and from the difference between ERAI NEI and CERES
TOA radiative fluxes for surface energy input.

As in Fig. 3, we decompose NEI variations across models
(Fig. 4a) into TOA CRE (Fig. 4b) and surface energy input
(Fig. 4c). (The confidence bounds in Fig. 4 underestimate
the true confidence intervals, because they are based on t-
statistics but the lack of independence among the climate
models implies that the effective sample size is smaller than
the total number of models used in the t-statistic.) The sign
of the correlation coefficient is reversed in the NH so that
positive correlations in both hemispheres are associated with
positive AET0 anomalies. The only NEI variations that are



ADAM ET AL.: DOUBLE-ITCZ BIAS AND ATMOSPHERIC ENERGY BUDGET X - 5

Figure 4. Meridional dependence of the (Pearson) cor-
relation coefficient (shading indicates 95% confidence
bounds) between CMIP5 annual- and zonal-mean cross-
equatorial atmospheric energy transport AET0 and (a)
atmospheric net energy input NEI, (b) top-of-atmosphere
(TOA) cloud radiative effect (CRE), and (c) surface en-
ergy input. The sign of the correlation coefficient is re-
versed in the NH so that positive anomalies in both hemi-
spheres are related to positive anomalies in AET0.

robustly associated across models with variations in AET0

are those in the SH, which are primarily driven by CRE
variations (Fig. 4b) [Li and Xie, 2012]. These CRE vari-
ations do not appear to be confined to biases in Southern
Ocean clouds [cf. Hwang and Frierson, 2013]; rather, the as-
sociated cloud biases span the tropics and the midlatitudes,
with maximal correlation with AET0 in the subtropics and
midlatitudes. As also shown by Li and Xie [2014], surface
energy fluxes are not significantly related to the spread in the
asymmetric aspects of the double-ITCZ bias among models.
This points to SH tropical and midlatitude cloud variations
across models being responsible for AET0 variations and the
associated variations in the tropical precipitation asymme-

try index AP . Similarly, biases in tropical clouds (Figs. 3b
and 4b) and ocean energy uptake (Figs. 3c and 4c) may also
be responsible for NEI0 biases and the associated variations
in the equatorial precipitation index EP .

*

4. Discussion and conclusions

Tropical precipitation biases and intermodel variations
among coupled climate models (Fig. 1a) have hemispher-
ically antisymmetric and symmetric components, which are
well characterized by the tropical precipitation asymmetry
index AP (Fig. 1b) and the equatorial precipitation index
EP (Fig. 1c). Consistent with the first-order arguments re-
lating the position of the ITCZ and energy flux equator to
terms in the atmospheric energy balance, we find that hemi-
spherically antisymmetric precipitation biases are primarily
related to the cross-equatorial atmospheric energy transport
AET0 (Fig. 2a), consistent with Hwang and Frierson [2013];
hemispherically symmetric biases are more closely related
to the atmospheric net energy input near the equator NEI0
(Fig. 2b).

A negative bias in the CMIP5 NEI0 ensemble mean (Fig.
2b) results from biases in ocean heat transport, surface heat
fluxes, and cloud radiative effects [Li and Xie, 2012] near
the equator. By contrast, CMIP5 models exhibit positive
AET0 biases which are not easily related to NEI biases in
a specific region (Figs. 3, 4). They correlate with NEI bi-
ases in a broad swath of the SH tropics and midlatitudes.
NEI biases in specific latitude bands (e.g., over the South-
ern Ocean) cannot uniquely be associated with AET0 bi-
ases because local biases may be compensated in their effect
on AET0 biases through opposing biases in other latitude
bands [e.g., Nam et al., 2012; Kay et al., 2016], or through
a partially compensating ocean energy transport response
[Hawcroft et al., 2016].

Positive AET0 biases are consistent with positive NEI bi-
ases in the Southern Ocean due to weak shortwave reflection
by low-level clouds [e.g., Hwang and Frierson, 2013], but also
with negative NEI biases in the NH subtropics and extrat-
ropics (related to AMOC biases [Wang et al., 2014]), as well
as NEI biases in the deep tropics. However, Southern Ocean
and AMOC biases may themselves be related [Wang et al.,
2014], making it difficult to consider the effect of either bias
on AET0 independently.

Similarly, deep tropical NEI biases may be a result of the
double-ITCZ bias, rather than a cause of it. However, if they
are induced by the double-ITCZ bias, these biases imply a
positive feedback, whereby positive AET0 anomalies (driven
by, for example, the Southern Ocean shortwave bias or a
weaker AMOC) are reinforced by the induced NEI anoma-
lies in the deep tropics. The evidence for such positive cloud
feedbacks on ITCZ position is mixed [Li and Xie, 2014; Voigt
et al., 2014]. Since NEI biases in the deep tropics are directly
related to the symmetric aspects of the double-ITCZ bias,
and since they may also account for the antisymmetric as-
pects of the bias, the study of NEI biases in the deep tropics
is critical for understanding the double-ITCZ bias.

The interpretation of biases in the atmospheric energy
budget of climate models is limited by uncertainty in the
observational budgets [Trenberth et al., 2001]. Nonetheless,
the correspondence between the NEI biases shown here and
known CMIP5 biases [Flato et al., 2013] raises confidence in
our results. Further examination of the zonally-asymmetric
and seasonally-varying aspects of tropical precipitation and
of the atmospheric energy budget of climate models may
provide additional information regarding the origin of ITCZ
biases.
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